Skip to content

Commit

Permalink
[mlir][Target] Teach dense_resource conversion to LLVMIR Target (#78958)
Browse files Browse the repository at this point in the history
This patch adds support for translating dense_resource attributes to
LLVMIR Target.
The support added is similar to how DenseElementsAttr is handled, except
we
don't need to handle splats.

Another possible way of doing this is adding iteration on
dense_resource, but that is
non-trivial as DenseResourceAttr is not meant to be something you should
directly
access. It has subclasses which you are supposed to use to iterate on
it.
  • Loading branch information
Groverkss authored Jan 23, 2024
1 parent 2b8649f commit 9261ab7
Show file tree
Hide file tree
Showing 3 changed files with 174 additions and 0 deletions.
99 changes: 99 additions & 0 deletions mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectResourceBlobManager.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
Expand Down Expand Up @@ -446,6 +447,99 @@ convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}

/// Convert a dense resource elements attribute to an LLVM IR constant using its
/// raw data storage if possible. This supports elements attributes of tensor or
/// vector type and avoids constructing separate objects for individual values
/// of the innermost dimension. Constants for other dimensions are still
/// constructed recursively. Returns nullptr on failure and emits errors at
/// `loc`.
static llvm::Constant *convertDenseResourceElementsAttr(
Location loc, DenseResourceElementsAttr denseResourceAttr,
llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
assert(denseResourceAttr && "expected non-null attribute");

llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
if (!llvm::ConstantDataSequential::isElementTypeCompatible(
innermostLLVMType)) {
emitError(loc, "no known conversion for innermost element type");
return nullptr;
}

ShapedType type = denseResourceAttr.getType();
assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");

AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
if (!blob) {
emitError(loc, "resource does not exist");
return nullptr;
}

ArrayRef<char> rawData = blob->getData();

// Check that the raw data size matches what is expected for the scalar size.
// TODO: in theory, we could repack the data here to keep constructing from
// raw data.
// TODO: we may also need to consider endianness when cross-compiling to an
// architecture where it is different.
int64_t numElements = denseResourceAttr.getType().getNumElements();
int64_t elementByteSize = rawData.size() / numElements;
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
emitError(loc, "raw data size does not match element type size");
return nullptr;
}

// Compute the shape of all dimensions but the innermost. Note that the
// innermost dimension may be that of the vector element type.
bool hasVectorElementType = isa<VectorType>(type.getElementType());
int64_t numAggregates =
numElements / (hasVectorElementType
? 1
: denseResourceAttr.getType().getShape().back());
ArrayRef<int64_t> outerShape = type.getShape();
if (!hasVectorElementType)
outerShape = outerShape.drop_back();

// Create a constructor for the innermost constant from a piece of raw data.
std::function<llvm::Constant *(StringRef)> buildCstData;
if (isa<TensorType>(type)) {
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
if (vectorElementType && vectorElementType.getRank() == 1) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(
data, vectorElementType.getShape().back(), innermostLLVMType);
};
} else if (!vectorElementType) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
} else if (isa<VectorType>(type)) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
if (!buildCstData) {
emitError(loc, "unsupported dense_resource type");
return nullptr;
}

// Create innermost constants and defer to the default constant creation
// mechanism for other dimensions.
SmallVector<llvm::Constant *> constants;
int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
(innermostLLVMType->getScalarSizeInBits() / 8);
constants.reserve(numAggregates);
for (unsigned i = 0; i < numAggregates; ++i) {
StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
constants.push_back(buildCstData(data));
}

ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}

/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
Expand Down Expand Up @@ -546,6 +640,11 @@ llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
return result;
}

if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
moduleTranslation);
}

// Fall back to element-by-element construction otherwise.
if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
assert(elementsAttr.getShapedType().hasStaticShape());
Expand Down
52 changes: 52 additions & 0 deletions mlir/test/Target/LLVMIR/llvmir-invalid.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -313,3 +313,55 @@ llvm.func @foo() {
// expected-error @below{{must appear at the module level}}
llvm.linker_options ["test"]
}

// -----

module @does_not_exist {
// expected-error @below{{resource does not exist}}
llvm.mlir.global internal constant @constant(dense_resource<test0> : tensor<4xf32>) : !llvm.array<4 x f32>
}

// -----

module @raw_data_does_not_match_element_type_size {
// expected-error @below{{raw data size does not match element type size}}
llvm.mlir.global internal constant @constant(dense_resource<test1> : tensor<5xf32>) : !llvm.array<4 x f32>
}

{-#
dialect_resources: {
builtin: {
test1: "0x0800000054A3B53ED6C0B33E55D1A2BDE5D2BB3E"
}
}
#-}

// -----

module @does_not_exist {
// expected-error @below{{unsupported dense_resource type}}
llvm.mlir.global internal constant @constant(dense_resource<test1> : memref<4xf32>) : !llvm.array<4 x f32>
}

{-#
dialect_resources: {
builtin: {
test1: "0x0800000054A3B53ED6C0B33E55D1A2BDE5D2BB3E"
}
}
#-}

// -----

module @no_known_conversion_innermost_eltype {
// expected-error @below{{no known conversion for innermost element type}}
llvm.mlir.global internal constant @constant(dense_resource<test0> : tensor<4xi4>) : !llvm.array<4 x i4>
}

{-#
dialect_resources: {
builtin: {
test1: "0x0800000054A3B53ED6C0B33E55D1A2BDE5D2BB3E"
}
}
#-}
23 changes: 23 additions & 0 deletions mlir/test/Target/LLVMIR/llvmir.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,19 @@ llvm.mlir.global internal @dense_float_vector_3d(dense<[[[1.0, 2.0], [3.0, 4.0]]
// CHECK{LITERAL}: @splat_float_vector_3d = internal global [2 x [2 x <2 x float>]] [[2 x <2 x float>] [<2 x float> <float 4.200000e+01, float 4.200000e+01>, <2 x float> <float 4.200000e+01, float 4.200000e+01>], [2 x <2 x float>] [<2 x float> <float 4.200000e+01, float 4.200000e+01>, <2 x float> <float 4.200000e+01, float 4.200000e+01>]]
llvm.mlir.global internal @splat_float_vector_3d(dense<42.0> : vector<2x2x2xf32>) : !llvm.array<2 x !llvm.array<2 x vector<2xf32>>>

// CHECK{LITERAL}: @dense_resource_tensor_constant = internal constant [5 x float] [float 0x3FCA034080000000, float 0xBFD0466300000000, float 0xBFD75DDF80000000, float 0xBFDE074F40000000, float 0x3FDDD3A1C0000000]
llvm.mlir.global internal constant @dense_resource_tensor_constant(dense_resource<dense_resource_test_5xf32> : tensor<5xf32>) : !llvm.array<5 x f32>

// CHECK{LITERAL}: @dense_resource_vector_constant = internal constant <5 x float> <float 0x3FCA034080000000, float 0xBFD0466300000000, float 0xBFD75DDF80000000, float 0xBFDE074F40000000, float 0x3FDDD3A1C0000000>
llvm.mlir.global internal constant @dense_resource_vector_constant(dense_resource<dense_resource_test_5xf32> : vector<5xf32>) : vector<5xf32>


// CHECK{LITERAL}: @dense_resource_multidim_tensor_constant = internal constant [1 x [2 x [2 x float]]] [[2 x [2 x float]] [[2 x float] [float 0x3FD6B46A80000000, float 0x3FD6781AC0000000], [2 x float] [float 0xBFB45A2AA0000000, float 0x3FD77A5CA0000000]]]
llvm.mlir.global internal constant @dense_resource_multidim_tensor_constant(dense_resource<dense_resource_test_2x2xf32> : tensor<1x2x2xf32>) : !llvm.array<1 x !llvm.array<2 x !llvm.array<2 x f32>>>

// CHECK{LITERAL}: @dense_resource_multidim_vector_constant = internal constant [1 x [2 x <2 x float>]] [[2 x <2 x float>] [<2 x float> <float 0x3FD6B46A80000000, float 0x3FD6781AC0000000>, <2 x float> <float 0xBFB45A2AA0000000, float 0x3FD77A5CA0000000>]]
llvm.mlir.global internal constant @dense_resource_multidim_vector_constant(dense_resource<dense_resource_test_2x2xf32> : vector<1x2x2xf32>) : !llvm.array<1 x !llvm.array<2 x vector<2 x f32>>>

//
// Linkage attribute.
//
Expand Down Expand Up @@ -1577,6 +1590,16 @@ llvm.func @invokeLandingpad() -> i32 attributes { personality = @__gxx_personali
llvm.invoke %9(%6, %0) to ^bb2 unwind ^bb1 vararg(!llvm.func<void (ptr, ...)>) : !llvm.ptr, (!llvm.ptr, i32) -> ()
}

// Resources are kept at end of file. New tests should be added above this.
{-#
dialect_resources: {
builtin: {
dense_resource_test_5xf32: "0x08000000041A503E183382BEFCEEBABE7A3AF0BE0E9DEE3E",
dense_resource_test_2x2xf32: "0x0800000054A3B53ED6C0B33E55D1A2BDE5D2BB3E"
}
}
#-}

// -----

llvm.func @foo() -> i8
Expand Down

0 comments on commit 9261ab7

Please sign in to comment.