Official implementation of the paper Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning accepted at the 23rd International Conference on Image Analysis and Processing (ICIAP 2025).
1. Repository setup:
$ git clone https://github.com/intelligolabs/Detaux$ cd Detaux$ git clone https://github.com/google-research/disentanglement_lib.git$ mv disentanglement_lib disentanglement_library$ cp -r disentanglement_lib_patch/* disentanglement_library/disentanglement_lib/- Download 3dshapes.h5 from https://console.cloud.google.com/storage/browser/3d-shapes;tab=objects?prefix=&forceOnObjectsSortingFiltering=false
2. Conda enviroment setup:
$ conda create -n detaux python=3.7$ conda activate detaux$ python -m pip install pytorch-lightning==1.9.4$ cd disentanglement_library/$ python -m pip install -v -e .$ python -m pip install tensorflow-gpu==1.14$ python -m pip install --upgrade tensorboard$ cd ../$ python -m pip install wandb$ pip install torchvision
- To run the disentanglement part, use the file
detaux.py. In particular,launch_dis.shit contains one example of a launch script that you can use to modify the default configuration directly. - To run the clustering part, use the file
clustering.py. - Finally, with the file
aux_learning.py, you will be able to perform the auxiliary learning phase with the new labels discovered in step 2.
We want to thank Marco Fumero for the repository PMPdisentanglement, which provides us with the scripts used to manage the disentanglement part.
Geri Skenderi1, Luigi Capogrosso2, Andrea Toaiari2, Matteo Denitto3, Franco Fummi2, Simone Melzi4
1 Bocconi University, Bocconi Institute for Data Science and Analytics, Milan, Italy
2 University of Verona, Dept. of Engineering for Innovation Medicine, Verona, Italy
3 HUMATICS - SYS-DAT Group, Verona, Italy
4 University of Milano-Bicocca, Dept. of Informatics, Systems and Communication, Milan, Italy
If you use Detaux, please, cite the following paper:
@Article{skenderi2023disentangled,
title = {{Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning}},
author = {Skenderi, Geri and Capogrosso, Luigi and Toaiari, Andrea and Denitto, Matteo and Fummi, Franco and Melzi, Simone and Cristani, Marco},
journal = {arXiv preprint arXiv:2310.09278},
year = {2023}
}
