Skip to content

Official implementation of the paper "Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning" accepted @ ICIAP 2025.

Notifications You must be signed in to change notification settings

intelligolabs/Detaux

Repository files navigation

Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning

Official implementation of the paper Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning accepted at the 23rd International Conference on Image Analysis and Processing (ICIAP 2025).

Installation

1. Repository setup:

2. Conda enviroment setup:

  • $ conda create -n detaux python=3.7
  • $ conda activate detaux
  • $ python -m pip install pytorch-lightning==1.9.4
  • $ cd disentanglement_library/
  • $ python -m pip install -v -e .
  • $ python -m pip install tensorflow-gpu==1.14
  • $ python -m pip install --upgrade tensorboard
  • $ cd ../
  • $ python -m pip install wandb
  • $ pip install torchvision

Run Detaux

  1. To run the disentanglement part, use the file detaux.py. In particular, launch_dis.sh it contains one example of a launch script that you can use to modify the default configuration directly.
  2. To run the clustering part, use the file clustering.py.
  3. Finally, with the file aux_learning.py, you will be able to perform the auxiliary learning phase with the new labels discovered in step 2.

Credits

We want to thank Marco Fumero for the repository PMPdisentanglement, which provides us with the scripts used to manage the disentanglement part.

Authors

Geri Skenderi1, Luigi Capogrosso2, Andrea Toaiari2, Matteo Denitto3, Franco Fummi2, Simone Melzi4

1 Bocconi University, Bocconi Institute for Data Science and Analytics, Milan, Italy

2 University of Verona, Dept. of Engineering for Innovation Medicine, Verona, Italy

3 HUMATICS - SYS-DAT Group, Verona, Italy

4 University of Milano-Bicocca, Dept. of Informatics, Systems and Communication, Milan, Italy

Citation

If you use Detaux, please, cite the following paper:

@Article{skenderi2023disentangled,
  title   = {{Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning}},
  author  = {Skenderi, Geri and Capogrosso, Luigi and Toaiari, Andrea and Denitto, Matteo and Fummi, Franco and Melzi, Simone and Cristani, Marco},
  journal = {arXiv preprint arXiv:2310.09278},
  year    = {2023}
}

About

Official implementation of the paper "Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning" accepted @ ICIAP 2025.

Resources

Stars

Watchers

Forks