forked from coreofscience/Metabolomics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMass_Spec_Comparison.Rmd
146 lines (111 loc) · 4.13 KB
/
Mass_Spec_Comparison.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
title: "Spectra Comparison"
author: "Martha Zuluaga"
date: "3/5/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# 1. Environment
```{r}
library(tidyverse)
library(ggplot2)
library(data.table)
library(ggrepel)
```
# 2. Call the data
```{r}
experimental <- "Experimental/MZ186.1286 (1).csv"
theoretical <- "Theoretical/186_theo.csv"
data <- read.csv(file = experimental)
data_theoretical <- read.csv(file = theoretical, sep = ",")
```
# 3. Data tidy
## 3.1. Experimental data tidy
```{r}
data.1 <- data.frame(mass = data[!(is.na(data[,1])),1], intensity = data[!(is.na(data[,1])),2]) %>%
arrange(desc(intensity))
data.1$rel_intensity <- data.1$intensity/data.1$intensity[1]*100
data.1$energy <- "15.ev"
data.2 <- data.frame(mass = data[!(is.na(data[,3])),3], intensity = data[!(is.na(data[,3])),4]) %>%
arrange(desc(intensity))
data.2$rel_intensity <- data.2$intensity/data.2$intensity[1]*100
data.2$energy <- "35.ev"
data.3 <- data.frame(mass = data[!(is.na(data[,5])),5], intensity = data[!(is.na(data[,5])),6]) %>%
arrange(desc(intensity))
data.3$rel_intensity <- data.3$intensity/data.3$intensity[1]*100
data.3$energy <- "55.ev"
data.exp <- rbind(data.1,data.2, data.3)
```
## 3.2. Theoretical spec data tidy
```{r}
data.1 <- data.frame(mass = data_theoretical[!(is.na(data_theoretical[,1])),1], intensity = data_theoretical[!(is.na(data_theoretical[,1])),2]) %>%
arrange(desc(intensity))
data.1$rel_intensity <- data.1$intensity/data.1$intensity[1]*100
data.1$energy <- "10.ev"
data.2 <- data.frame(mass = data_theoretical[!(is.na(data_theoretical[,3])),3], intensity = data_theoretical[!(is.na(data_theoretical[,3])),4]) %>%
arrange(desc(intensity))
data.2$rel_intensity <- data.2$intensity/data.2$intensity[1]*100
data.2$energy <- "20.ev"
data.3 <- data.frame(mass = data_theoretical[!(is.na(data_theoretical[,5])),5], intensity = data_theoretical[!(is.na(data_theoretical[,5])),6]) %>%
arrange(desc(intensity))
data.3$rel_intensity <- data.3$intensity/data.3$intensity[1]*100
data.3$energy <- "40.ev"
data.theo <- rbind(data.1,data.2,data.3)
data.theo$type <- "Theoretical"
```
# 4. Data analysis. Matching theoretical and experimental data
```{r}
mass <- c()
intensity <- c()
rel_intensity <- c()
energy <- c()
for (i in 1:length(data.theo$mass)){
aux <- data.exp[near(data.exp$mass,data.theo$mass[i], tol = 0.5),] %>% arrange(desc(rel_intensity))
mass <- c(mass,aux[1,1])
intensity <- c(intensity,aux[1,2])
rel_intensity <- c(rel_intensity,aux[1,3])
energy <- c(energy,aux[1,4])
}
data.match <- data.frame(mass = mass, intensity = intensity,
rel_intensity = rel_intensity,
energy = energy, type = "Experimental") # Datos emparejados con los teoricos
total_data <- rbind(data.match,data.theo)
```
# 5. matching matrix
```{r}
comparative <- tibble(exp.mass = data.match$mass, theo.mass = data.theo$mass,
rel_intensity.exp = data.match$rel_intensity,
rel_intensity.theo = data.theo$rel_intensity)
comparative_20 <- comparative %>%
filter(rel_intensity.exp >=10) %>%
arrange(desc(rel_intensity.theo))
head(comparative_20, 21)
```
# 6. mass error
```{r}
comparative_20 <- comparative_20 %>%
mutate(Diff_Da = theo.mass-exp.mass) %>%
mutate(ppm = (theo.mass-exp.mass)*1000000/theo.mass)
head(comparative_20, 20)
```
# 7. write table
```{r}
write.csv(comparative_20, file = "SpectraResults/match_hidroxyleucine")
```
#8. Overlapping spectrum
```{r message=FALSE,warning=FALSE}
data.theo <- data.theo %>%
mutate(rel_intensity = -rel_intensity)
total_data <- rbind(data.match, data.theo)
ggplot(total_data, aes(x=mass, y=rel_intensity, color = type)) +
geom_point(size = 2) +
geom_segment(aes(x=mass,
xend=mass,
y=0,
yend=rel_intensity)) +
geom_text_repel(data = total_data %>%
filter(abs(rel_intensity) > 15),
mapping = aes(label = round(mass, 2)), size = 3, show.legend = F)
```