-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGLKS.py
283 lines (210 loc) · 12.7 KB
/
GLKS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from EncDecModel import *
from modules.BilinearAttention import *
from torch.distributions.categorical import Categorical
from torch.nn.parameter import Parameter
from modules.Highway import *
from data.Utils import *
class GenEncoder(nn.Module):
def __init__(self, n, src_vocab_size, embedding_size, hidden_size, emb_matrix=None):
super(GenEncoder, self).__init__()
self.n=n
if emb_matrix is None:
self.c_embedding = nn.ModuleList([nn.Embedding(src_vocab_size, embedding_size, padding_idx=0) for i in range(n)])
else:
self.c_embedding = nn.ModuleList([create_emb_layer(emb_matrix) for i in range(n)])
self.c_encs = nn.ModuleList([nn.GRU(embedding_size, int(hidden_size/2), num_layers=1, bidirectional=True, batch_first=True) if i==0 else nn.GRU(embedding_size+hidden_size, int(hidden_size/2), num_layers=1, bidirectional=True, batch_first=True) for i in range(n)])
def forward(self, c):
c_outputs = []
c_states = []
c_mask = c.ne(0).detach()
c_lengths = c_mask.sum(dim=1).detach()
c_emb = F.dropout(self.c_embedding[0](c), training=self.training)
c_enc_output=c_emb
for i in range(self.n):
if i>0:
c_enc_output = torch.cat([c_enc_output, F.dropout(self.c_embedding[i](c), training=self.training)], dim=-1)
c_enc_output, c_state = gru_forward(self.c_encs[i], c_enc_output, c_lengths)
c_outputs.append(c_enc_output.unsqueeze(1))
c_states.append(c_state.view(c_state.size(0), -1).unsqueeze(1))
return torch.cat(c_outputs, dim=1), torch.cat(c_states, dim=1)
class KnowledgeSelector(nn.Module):
def __init__(self, hidden_size, min_window_size=5, n_windows=4):
super(KnowledgeSelector, self).__init__()
self.min_window_size=min_window_size
self.n_windows=n_windows
self.b_highway = Highway(hidden_size * 2, hidden_size*2, num_layers=2)
self.c_highway = Highway(hidden_size * 2, hidden_size*2, num_layers=2)
self.match_attn = BilinearAttention(query_size=hidden_size*2, key_size=hidden_size*2, hidden_size=hidden_size*2)
self.area_attn = BilinearAttention(query_size=hidden_size, key_size=hidden_size, hidden_size=hidden_size)
def match(self, b_enc_output, c_enc_output, c_state, b_mask, c_mask):
b_enc_output = self.b_highway(torch.cat([b_enc_output, c_state.expand(-1, b_enc_output.size(1), -1)], dim=-1))
c_enc_output = self.c_highway(torch.cat([c_enc_output, c_state.expand(-1, c_enc_output.size(1), -1)], dim=-1))
matching = self.match_attn.matching(b_enc_output, c_enc_output)
matching = matching.masked_fill(1 - c_mask.unsqueeze(1), -float('inf'))
matching = matching.masked_fill(1 - b_mask.unsqueeze(2), 0)
score = matching.max(dim=-1)[0]
return score
def segments(self, b_enc_output, b_score, c_state):
window_size = self.min_window_size
bs = list()
ss = list()
for i in range(self.n_windows):
b = b_enc_output.unfold(1, window_size, self.min_window_size)
b = b.transpose(2, 3).contiguous()
b = self.area_attn(c_state.unsqueeze(1), b, b)[0].squeeze(2)
bs.append(b)
s = b_score.unfold(1, window_size, self.min_window_size)
s = s.sum(dim=-1)
ss.append(s)
window_size += self.min_window_size
return torch.cat(bs, dim=1), torch.cat(ss, dim=1)
def forward(self, b_enc_output, c_enc_output, c_state, b_mask, c_mask):
b_score=self.match(b_enc_output, c_enc_output, c_state, b_mask, c_mask)
segments, s_score=self.segments(b_enc_output, b_score, c_state)
s_score = F.softmax(s_score, dim=-1)
segments = torch.bmm(s_score.unsqueeze(1), segments)
return segments, s_score, b_score
class CopyGenerator(nn.Module):
def __init__(self, embedding_size, hidden_size):
super(CopyGenerator, self).__init__()
self.b_attn = BilinearAttention(query_size=embedding_size+hidden_size * 2, key_size=hidden_size, hidden_size=hidden_size)
def forward(self, p, word, state, segment, b_enc_output, c_enc_output, b_mask, c_mask):
p = self.b_attn.score(torch.cat([word, state, segment], dim=-1), b_enc_output, mask=b_mask.unsqueeze(1)).squeeze(1)
return p
class VocabGenerator(nn.Module):
def __init__(self, embedding_size, hidden_size, vocab_size):
super(VocabGenerator, self).__init__()
self.c_attn = BilinearAttention(query_size=embedding_size+hidden_size*2, key_size=hidden_size, hidden_size=hidden_size)
self.b_attn = BilinearAttention(query_size=embedding_size+hidden_size*2, key_size=hidden_size, hidden_size=hidden_size)
self.readout = nn.Linear(embedding_size+4*hidden_size, hidden_size)
self.generator = nn.Linear(hidden_size, vocab_size)
def forward(self, p, word, state, segment, b_enc_output, c_enc_output, b_mask, c_mask):
c_output, _=self.c_attn(torch.cat([word, state, segment], dim=-1), c_enc_output, c_enc_output, mask=c_mask.unsqueeze(1))
c_output = c_output.squeeze(1)
b_output, _=self.b_attn(torch.cat([word, state, segment], dim=-1), b_enc_output, b_enc_output, mask=b_mask.unsqueeze(1))
b_output = b_output.squeeze(1)
concat_output = torch.cat((word.squeeze(1), state.squeeze(1), segment.squeeze(1), c_output, b_output), dim=-1)
feature_output=self.readout(concat_output)
p = F.softmax(self.generator(feature_output), dim=-1)
return p
class StateTracker(nn.Module):
def __init__(self, embedding_size, hidden_size):
super(StateTracker, self).__init__()
self.linear=nn.Linear(hidden_size*2, hidden_size)
self.gru = nn.GRU(embedding_size, hidden_size, num_layers=1, bidirectional=False, batch_first=True)
def initialize(self, segment, state):
return self.linear(torch.cat([state, segment], dim=-1))
def forward(self, word, state):
return self.gru(word, state.transpose(0, 1))[1].transpose(0,1)
class Mixturer(nn.Module):
def __init__(self, hidden_size):
super(Mixturer, self).__init__()
self.linear1 = nn.Linear(hidden_size, 1)
def forward(self, state, dists1, dists2, dyn_map):
p_k_v = torch.sigmoid(self.linear1(state.squeeze(1)))
dists2 = torch.bmm(dists2.unsqueeze(1), dyn_map).squeeze(1)
dist = torch.cat([p_k_v * dists1, (1. - p_k_v) * dists2], dim=-1)
return dist
class Criterion(object):
def __init__(self, tgt_vocab_size, eps=1e-10):
super(Criterion, self).__init__()
self.eps = eps
self.offset = tgt_vocab_size
def __call__(self, gen_output, response, dyn_response, UNK, reduction='mean'):
dyn_not_pad = dyn_response.ne(0).float()
v_not_unk = response.ne(UNK).float()
v_not_pad=response.ne(0).float()
if len(gen_output.size()) > 2:
gen_output = gen_output.view(-1, gen_output.size(-1))
p_dyn = gen_output.gather(1, dyn_response.view(-1, 1) + self.offset).view(-1)
p_dyn = p_dyn.mul(dyn_not_pad.view(-1))
p_v = gen_output.gather(1, response.view(-1, 1)).view(-1)
p_v = p_v.mul(v_not_unk.view(-1))
p = p_dyn + p_v + self.eps
p = p.log()
loss = -p.mul(v_not_pad.view(-1))
if reduction=='mean':
return loss.sum()/v_not_pad.sum()
elif reduction=='none':
return loss.view(response.size())
class GLKS(EncDecModel):
def __init__(self, min_window_size, num_windows, embedding_size, hidden_size, vocab2id, id2vocab, max_dec_len, beam_width, emb_matrix=None, eps=1e-10):
super(GLKS, self).__init__(vocab2id=vocab2id, max_dec_len=max_dec_len, beam_width=beam_width, eps=eps)
self.vocab_size = len(vocab2id)
self.vocab2id = vocab2id
self.id2vocab = id2vocab
self.b_encoder = GenEncoder(1, self.vocab_size, embedding_size, hidden_size, emb_matrix=emb_matrix)
self.c_encoder = GenEncoder(1, self.vocab_size, embedding_size, hidden_size, emb_matrix=emb_matrix)
if emb_matrix is None:
self.embedding = nn.Embedding(self.vocab_size, embedding_size, padding_idx=0)
else:
self.embedding=create_emb_layer(emb_matrix)
self.state_tracker = StateTracker(embedding_size, hidden_size)
self.k_selector = KnowledgeSelector(hidden_size, min_window_size=min_window_size, n_windows=num_windows)
self.c_generator = CopyGenerator(embedding_size, hidden_size)
self.v_generator = VocabGenerator(embedding_size, hidden_size, self.vocab_size)
self.mixture = Mixturer(hidden_size)
self.criterion = Criterion(self.vocab_size)
def encode(self, data):
b_enc_outputs, b_states= self.b_encoder(data['unstructured_knowledge'])
c_enc_outputs, c_states= self.c_encoder(data['context'])
b_enc_output=b_enc_outputs[:,-1]
b_state=b_states[:,-1].unsqueeze(1)
c_enc_output=c_enc_outputs[:,-1]
c_state = c_states[:, -1].unsqueeze(1)
segment, p_s, p_g =self.k_selector(b_enc_output, c_enc_output, c_state, data['unstructured_knowledge'].ne(0), data['context'].ne(0))
return {'b_enc_output': b_enc_output, 'b_state': b_state, 'c_enc_output': c_enc_output, 'c_state':c_state, 'segment':segment, 'p_s':p_s, 'p_g':p_g}
def init_decoder_states(self, data, encode_outputs):
return self.state_tracker.initialize(encode_outputs['segment'], encode_outputs['c_state'])
def decode(self, data, previous_word, encode_outputs, previous_deocde_outputs):
word_embedding = F.dropout(self.embedding(previous_word), training=self.training).unsqueeze(1)
states=previous_deocde_outputs['state']
states=self.state_tracker(word_embedding, states)
if 'p_k' in previous_deocde_outputs:
p_k = previous_deocde_outputs['p_k']
p_v = previous_deocde_outputs['p_v']
else:
p_k = None
p_v = None
p_k = self.c_generator(p_k, word_embedding, states, encode_outputs['segment'], encode_outputs['b_enc_output'], encode_outputs['c_enc_output'], data['unstructured_knowledge'].ne(0), data['context'].ne(0))
p_v = self.v_generator(p_v, word_embedding, states, encode_outputs['segment'], encode_outputs['b_enc_output'], encode_outputs['c_enc_output'], data['unstructured_knowledge'].ne(0), data['context'].ne(0))
return {'p_k':p_k, 'p_v':p_v, 'state':states}
def generate(self, data, encode_outputs, decode_outputs, softmax=True):
p = self.mixture(decode_outputs['state'], decode_outputs['p_v'], decode_outputs['p_k'], data['dyn_map'])
return {'p': p}
def generation_to_decoder_input(self, data, indices):
return indices.masked_fill(indices>=self.vocab_size, self.vocab2id[UNK_WORD])
def to_word(self, data, gen_output, k=5, sampling=False):
gen_output = gen_output['p']
if not sampling:
return copy_topk(gen_output, data['vocab_map'], data['vocab_overlap'], k=k, PAD=self.vocab2id[PAD_WORD], UNK=self.vocab2id[UNK_WORD], BOS=self.vocab2id[BOS_WORD])
else:
return randomk(gen_output[:,:self.vocab_size], k=k, PAD=self.vocab2id[PAD_WORD], UNK=self.vocab2id[UNK_WORD], BOS=self.vocab2id[BOS_WORD])
def to_sentence(self, data, batch_indices):
return to_copy_sentence(data, batch_indices, self.id2vocab, data['dyn_id2vocab'])
def forward(self, data, method='mle_train'):
data['dyn_map'] = build_map(data['dyn_map'])
if 'train' in method:
return self.do_train(data, type=method)
elif method=='test':
data['vocab_map'] = build_map(data['vocab_map'], self.vocab_size)
if self.beam_width==1:
return self.greedy(data)
else:
return self.beam(data)
def do_train(self, data, type='mle_train'):
encode_output, init_decoder_state, all_decode_output, all_gen_output = decode_to_end(self, data, self.vocab2id, tgt=data['response'])
loss=list()
if 'mle' in type:
p = torch.cat([p['p'].unsqueeze(1) for p in all_gen_output], dim=1)
p = p.view(-1, p.size(-1))
r_loss = self.criterion(p, data['response'], data['dyn_response'], self.vocab2id[UNK_WORD], reduction='mean').unsqueeze(0)
loss+=[r_loss]
if 'mcc' in type:
e1_loss = 1 - 0.1 * Categorical(probs=p[:, :self.vocab_size] + self.eps).entropy().mean().unsqueeze(0)
e2_loss = 1 - 0.1 * Categorical(probs=p[:, self.vocab_size:] + self.eps).entropy().mean().unsqueeze(0)
loss += [e1_loss, e2_loss]
if 'ds' in type:
k_loss = F.kl_div((encode_output['p_s'].squeeze(1) + self.eps).log(), data['selection'] + self.eps, reduction='batchmean').unsqueeze(0)
loss+=[k_loss]
return loss