-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlearn.py
923 lines (749 loc) · 39 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
import numpy as np
import sys
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from utils.prioritized_replay_buffer import NaivePrioritizedReplayMemory, Transition
from utils.history_buffer import HistoryBuffer
from utils.general import export_plot
class DRRTrainer(object):
def __init__(self,
config,
actor_function,
critic_function,
state_rep_function,
reward_function,
users,
items,
train_data,
test_data,
user_embeddings,
item_embeddings,
cuda):
# Import reward function
self.reward_function = reward_function
# Initialize device
self.device_id = torch.cuda.current_device()
print("CUDA Device ID: ", self.device_id)
print(torch.cuda.get_device_name(self.device_id))
print("CUDA Memory Allocated: ", torch.cuda.memory_allocated(self.device_id))
print("CUDA Memory Reserved: ", torch.cuda.memory_reserved(self.device_id) / 1000000000, "GB")
torch.cuda.empty_cache()
self.device = torch.device('cuda:{}'.format(self.device_id) if cuda else "cpu")
print("Current PyTorch Device: ", self.device)
# Import Data
self.train_data = train_data
self.test_data = test_data
self.users = users
self.items = items
self.user_embeddings = user_embeddings.to(self.device)
self.item_embeddings = item_embeddings
self.u = 2
self.i = 4
self.r = 1
self.ti = 0
# Dimensions
self.item_features = self.item_embeddings.shape[1]
self.user_features = self.user_embeddings.shape[1]
self.n_items = self.item_embeddings.shape[0]
self.n_users = self.user_embeddings.shape[0]
self.state_shape = 3 * self.item_features # dimensionality 3k for drr-ave
self.action_shape = self.item_features
self.critic_output_shape = 1
self.config = config
print("Data dimensions extracted")
# Initialize neural networks
self.state_rep_net = state_rep_function(self.config.history_buffer_size,
self.item_features,
self.user_features)
self.actor_net = actor_function(self.state_shape,
self.action_shape)
self.target_actor_net = actor_function(self.state_shape,
self.action_shape)
self.critic_net = critic_function(self.action_shape,
self.state_shape,
self.critic_output_shape)
self.target_critic_net = critic_function(self.action_shape,
self.state_shape,
self.critic_output_shape)
print("Models initialized")
def init_weights(m):
if hasattr(m, 'weight'):
nn.init.orthogonal_(m.weight.data)
if hasattr(m, 'bias'):
nn.init.constant_(m.bias.data, 0)
# Initialize weights
self.state_rep_net.apply(init_weights)
self.actor_net.apply(init_weights)
self.critic_net.apply(init_weights)
# Copy weights target networks
self.target_actor_net.load_state_dict(
self.actor_net.state_dict())
self.target_critic_net.load_state_dict(
self.critic_net.state_dict())
print("Model weights initialized, copied to target")
# Move models and data to CUDA
if cuda:
# models
self.reward_function.cuda()
self.state_rep_net.cuda()
self.actor_net.cuda()
self.target_actor_net.cuda()
self.critic_net.cuda()
self.target_critic_net.cuda()
print("All models, train data, and user embeddings data moved to CUDA")
# Init optimizers
self.state_rep_optimizer = torch.optim.Adam(self.state_rep_net.parameters(), lr=self.config.lr_state_rep,
betas=(0.9, 0.999), eps=1e-08,
weight_decay=self.config.weight_decay, amsgrad=False)
self.actor_optimizer = torch.optim.Adam(self.actor_net.parameters(), lr=self.config.lr_actor,
betas=(0.9, 0.999), eps=1e-08, weight_decay=self.config.weight_decay,
amsgrad=False)
self.critic_optimizer = torch.optim.Adam(self.critic_net.parameters(), lr=self.config.lr_critic,
betas=(0.9, 0.999), eps=1e-08, weight_decay=self.config.weight_decay,
amsgrad=False)
print("Optimizers initialized")
def load_parameters(self):
self.state_rep_net.load_state_dict(torch.load(self.config.state_rep_model_trained))
self.actor_net.load_state_dict(torch.load(self.config.actor_model_trained))
self.critic_net.load_state_dict(torch.load(self.config.critic_model_trained))
self.target_actor_net.load_state_dict(self.actor_net.state_dict())
self.target_critic_net.load_state_dict(self.critic_net.state_dict())
def learn(self):
# Transfer training data to device
self.train_data = self.train_data.to(self.device)
# Init buffers
replay_buffer = NaivePrioritizedReplayMemory(self.config.replay_buffer_size,
prob_alpha=self.config.prob_alpha)
history_buffer = HistoryBuffer(self.config.history_buffer_size)
# Init trackers
timesteps = epoch = 0
eps_slope = abs(self.config.eps_start - self.config.eps) / self.config.eps_steps
eps = self.config.eps_start
actor_losses = []
critic_losses = []
epi_rewards = []
epi_avg_rewards = []
e_arr = []
# Get users, shuffle, andgo through array
user_idxs = np.array(list(self.users.values()))
np.random.shuffle(user_idxs)
# Start episodes
for idx, e in enumerate(user_idxs):
# ---------------------------- start of episode ---------------------------- #
# Stop if > than max
if timesteps - self.config.learning_start > self.config.max_timesteps_train:
break
# Extract positive user reviews from training
user_reviews = self.train_data[self.train_data[:, self.u] == e]
pos_user_reviews = user_reviews[user_reviews[:, self.r] > 0]
# Move on to next user if not enough positive reviews
if pos_user_reviews.shape[0] < self.config.history_buffer_size:
continue
# Copy item embeddings to candidate item embeddings set
candidate_items = self.item_embeddings.detach().clone().to(self.device)
# Sort positive user reviews by timestamp
pos_user_reviews = pos_user_reviews[pos_user_reviews[:, self.ti].sort()[1]]
# Extract user embedding tensor
user_emb = self.user_embeddings[e]
# Fill history buffer with positive user item embeddings and
# Remove item embeddings from candidate item set
ignored_items = []
for i in range(self.config.history_buffer_size):
emb = candidate_items[pos_user_reviews[i, self.i]]
history_buffer.push(emb.detach().clone())
# Initialize rewards tracker
rewards = []
# Starting item index
t = 0
state = None
action = None
reward = None
next_state = None
while t < self.config.episode_length:
# ---------------------------- start of timestep ---------------------------- #
# observe current state
# choose action according to actor network or exploration
if eps > self.config.eps:
eps -= eps_slope
else:
eps = self.config.eps
state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
with torch.no_grad():
if np.random.uniform(0, 1) < eps:
action = torch.from_numpy(0.1 * np.random.rand(self.action_shape)).float().to(self.device)
else:
action = self.actor_net(state.detach())
# Calculate ranking scores across items, discard ignored items
ranking_scores = candidate_items @ action
rec_items = torch.stack(ignored_items) if len(ignored_items) > 0 else []
ranking_scores[rec_items] = -float("inf")
# Get recommended item
rec_item_idx = torch.argmax(ranking_scores)
rec_item_emb = candidate_items[rec_item_idx]
# Get item reward
if rec_item_idx in user_reviews[:, self.i]:
# Reward from rating in dataset if item rated by user
reward = user_reviews[user_reviews[:, self.i] == rec_item_idx, self.r][0]
else:
# Item not rated by user, reward from PMF
with torch.no_grad():
if self.config.zero_reward:
reward = torch.tensor(0).to(self.device)
else:
reward = self.reward_function(torch.tensor(e).to(self.device), rec_item_idx)
# Track episode rewards
rewards.append(reward.item())
# Add item to history buffer if positive review, remove from candidate set
# Set next state to new or old
if reward > 0:
# Update history buffer with new item
history_buffer.push(rec_item_emb.detach().clone())
# Observe next state
with torch.no_grad():
next_state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
else:
# Keep history buffer the same, next state is current state
next_state = state.detach()
# Remove new item from future recommendations
ignored_items.append(torch.tensor(rec_item_idx).to(self.device))
# Add (state, action, reward, next_state) to experience replay
replay_buffer.push(state,
action,
next_state,
reward
)
# TRAIN
if (timesteps > self.config.learning_start) and \
(len(replay_buffer) >=
self.config.batch_size) and \
(timesteps % self.config.learning_freq == 0):
critic_loss, actor_loss, critic_params_norm = self.training_step(timesteps,
replay_buffer,
True
)
# LOGGING
actor_losses.append(actor_loss)
critic_losses.append(critic_loss)
if timesteps % self.config.log_freq == 0:
if len(rewards) > 0:
print(
f'Timestep {timesteps - self.config.learning_start} | '
f'Episode {epoch} | '
f'Mean Ep R '
f'{np.mean(rewards):.4f} | '
f'Max R {np.max(rewards):.4f} | '
f'Critic Params Norm {critic_params_norm:.4f} | '
f'Actor Loss {actor_loss:.4f} | '
f'Critic Loss {critic_loss:.4f} | ')
sys.stdout.flush()
# Housekeeping
t += 1
timesteps += 1
# ---------------------------- end of timestep ---------------------------- #
# ---------------------------- end of episode ---------------------------- #
# Logging
if timesteps - self.config.learning_start > t:
epoch += 1
e_arr.append(epoch)
epi_rewards.append(np.sum(rewards))
epi_avg_rewards.append(np.mean(rewards))
if t % self.config.saving_freq == 0:
export_plot(actor_losses, 'Actor Loss (Training)', self.config.train_actor_loss_plot_dir)
export_plot(critic_losses, 'Critic Loss (Training)', self.config.train_critic_loss_plot_dir)
export_plot(epi_avg_rewards,
'Average Episodic Reward (Training)',
self.config.train_mean_reward_plot_dir)
print('Training Finished')
# Save final model parameters
torch.save(self.actor_net.state_dict(),
self.config.actor_model_dir)
torch.save(self.critic_net.state_dict(),
self.config.critic_model_dir)
torch.save(self.state_rep_net.state_dict(),
self.config.state_rep_model_dir)
# Save data
np.save(self.config.train_actor_loss_data_dir, actor_losses)
np.save(self.config.train_critic_loss_data_dir, critic_losses)
np.save(self.config.train_mean_reward_data_dir, epi_avg_rewards)
# Export plots
export_plot(actor_losses, 'Actor Loss (Training)', self.config.train_actor_loss_plot_dir)
export_plot(critic_losses, 'Critic Loss (Training)', self.config.train_critic_loss_plot_dir)
export_plot(epi_avg_rewards,
'Average Episodic Reward (Training)',
self.config.train_mean_reward_plot_dir)
return actor_losses, critic_losses, epi_avg_rewards
def training_step(self, t, replay_buffer, training):
# Create batches
transitions, indicies, weights = replay_buffer.sample(self.config.batch_size, beta=self.config.beta)
batch = Transition(*zip(*transitions))
next_state_batch = torch.cat(batch.next_state).view(
self.config.batch_size, -1)
state_batch = torch.cat(batch.state).view(
self.config.batch_size, -1)
action_batch = torch.cat(batch.action).view(
self.config.batch_size, -1)
reward_batch = torch.stack(batch.reward).view(
self.config.batch_size, -1)
# ---------------------------- Update Critic Network ---------------------------- #
# Calculate Critic loss
critic_loss, new_priorities = self.compute_prioritized_dqn_loss(state_batch.detach(),
action_batch,
reward_batch,
next_state_batch,
weights)
# Minimize loss, update parameters, update priorities
self.critic_optimizer.zero_grad()
critic_loss.backward()
replay_buffer.update_priorities(indicies, new_priorities)
critic_param_norm = torch.nn.utils.clip_grad_norm_(self.critic_net.parameters(), self.config.clip_val)
self.critic_optimizer.step()
# ----------------------------- Update Actor Network ---------------------------- #
self.actor_optimizer.zero_grad()
self.state_rep_optimizer.zero_grad()
# Compute actor loss
actions_pred = self.actor_net(state_batch)
actor_loss = -self.critic_net(state_batch.detach(), actions_pred).mean()
# Minimize the loss
actor_loss.backward(retain_graph=True)
self.actor_optimizer.step()
self.state_rep_optimizer.step()
# ----------------------- Soft update the target networks ----------------------- #
self.soft_update(self.critic_net, self.target_critic_net, self.config.tau)
self.soft_update(self.actor_net, self.target_actor_net, self.config.tau)
# ---------------------------- Save models at checkpoints ---------------------------- #
if t % self.config.saving_freq == 0 and training:
torch.save(self.actor_net.state_dict(),
self.config.actor_model_dir)
torch.save(self.critic_net.state_dict(),
self.config.critic_model_dir)
torch.save(self.state_rep_net.state_dict(),
self.config.state_rep_model_dir)
return critic_loss.item(), actor_loss.item(), critic_param_norm
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
def compute_prioritized_dqn_loss(self,
state_batch,
action_batch,
reward_batch,
next_state_batch,
weights):
'''
:param state_batch: (torch tensor) shape = (batch_size x state_dims),
The batched tensor of states collected during
training (i.e. s)
:param action_batch: (torch LongTensor) shape = (batch_size,)
The actions that you actually took at each step (i.e. a)
:param reward_batch: (torch tensor) shape = (batch_size,)
The rewards that you actually got at each step (i.e. r)
:param next_state_batch: (torch tensor) shape = (batch_size x state_dims),
The batched tensor of next states collected during
training (i.e. s')
:param weights: (torch tensor) shape = (batch_size,)
Weights for each batch item w.r.t. prioritized experience replay buffer
:return: loss: (torch tensor) shape = (1),
new_priorities: (numpy array) shape = (batch_size,)
'''
# Extract target network Q values
with torch.no_grad():
next_action = self.target_actor_net(next_state_batch)
q_target = self.target_critic_net(next_state_batch, next_action)
# Build y
y = reward_batch + self.config.gamma * q_target
# Get Q values for current state
q_vals = self.critic_net(state_batch, action_batch)
# Calculate loss
loss = y - q_vals
loss = loss.flatten()
loss = loss.pow(2)
weights_ten = torch.tensor(weights, requires_grad=False).to(self.device)
loss = loss * weights_ten
# Calculate new priorities
new_priorities = (loss + 1e-5).cpu().detach().numpy()
loss = loss.mean()
return loss, new_priorities
def online_evaluate(self):
# Load model parameters
self.load_parameters()
# Get test data ready
self.test_data = self.test_data.to(self.device)
# Init buffers
replay_buffer = NaivePrioritizedReplayMemory(self.config.replay_buffer_size, prob_alpha=self.config.prob_alpha)
history_buffer = HistoryBuffer(self.config.history_buffer_size)
# Init trackers
timesteps = epoch = 0
actor_losses = []
critic_losses = []
rewards = []
# Get users, shuffle, and go through array
user_idxs = np.array(list(self.users.values()))
np.random.shuffle(user_idxs)
# Start episodes
for idx, e in enumerate(user_idxs):
# ---------------------------- start of episode ---------------------------- #
# Stop if > than max
if timesteps > self.config.max_timesteps_online:
break
# Extract positive user reviews from training
user_reviews = self.test_data[self.test_data[:, self.u] == e]
pos_user_reviews = user_reviews[user_reviews[:, self.r] > 0]
# Move on to next user if not enough positive reviews
if pos_user_reviews.shape[0] < self.config.history_buffer_size:
continue
# Copy item embeddings to candidate item embeddings set
candidate_items = self.item_embeddings.detach().clone().to(self.device)
# Sort positive user reviews by timestamp
pos_user_reviews = pos_user_reviews[pos_user_reviews[:, self.ti].sort()[1]]
# Extract user embedding tensor
user_emb = self.user_embeddings[e]
# Fill history buffer with positive user item embeddings and
# Remove item embeddings from candidate item set
ignored_items = []
for i in range(self.config.history_buffer_size):
emb = candidate_items[pos_user_reviews[i, self.i]]
history_buffer.push(emb.detach().clone())
# Starting item index
t = 0
# Reload before each session
self.load_parameters()
state = None
action = None
reward = None
next_state = None
while t < self.config.episode_length:
# ---------------------------- start of timestep ---------------------------- #
# observe current state
# choose action according to actor network or exploration
state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
with torch.no_grad():
if np.random.uniform(0, 1) < self.config.eps_eval:
action = torch.from_numpy(0.1 * np.random.rand(self.action_shape)).float().to(self.device)
else:
action = self.actor_net(state.detach())
# Calculate ranking scores across items, discard ignored items
ranking_scores = candidate_items @ action
rec_items = torch.stack(ignored_items) if len(ignored_items) > 0 else []
ranking_scores[rec_items] = -float("inf")
# Get recommended item
rec_item_idx = torch.argmax(ranking_scores)
rec_item_emb = candidate_items[rec_item_idx]
# Get item reward
if rec_item_idx in user_reviews[:, self.i]:
# Reward from rating in dataset if item rated by user
reward = user_reviews[user_reviews[:, self.i] == rec_item_idx, self.r][0]
else:
# Item not rated by user, reward from PMF
with torch.no_grad():
reward = self.reward_function(torch.tensor(e).to(self.device), rec_item_idx)
# Track episode rewards
rewards.append(reward.item())
# Add item to history buffer if positive review, remove from candidate set
# Set next state to new or old
if reward > 0:
# Update history buffer with new item
history_buffer.push(rec_item_emb.detach().clone())
# Observe next state
with torch.no_grad():
next_state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
else:
# Keep history buffer the same, next state is current state
next_state = state.detach()
# Remove new item from future recommendations
ignored_items.append(torch.tensor(rec_item_idx).to(self.device))
# Add (state, action, reward, next_state) to experience replay
replay_buffer.push(state,
action,
next_state,
reward
)
# TRAIN
if (len(replay_buffer) >= self.config.batch_size) and \
(timesteps % self.config.learning_freq == 0):
critic_loss, actor_loss, critic_params_norm = self.training_step(timesteps,
replay_buffer,
False
)
# LOGGING
actor_losses.append(actor_loss)
critic_losses.append(critic_loss)
if timesteps % self.config.log_freq == 0:
if len(rewards) > 0:
print(
f'Timestep {timesteps} | '
f'Episode {epoch} | '
f'Avg Total Reward {np.mean(rewards):.4f} | '
f'Critic Params Norm {critic_params_norm:.4f} | '
f'Actor Loss {actor_loss:.4f} | '
f'Critic Loss {critic_loss:.4f} | ')
sys.stdout.flush()
# Housekeeping
t += 1
timesteps += 1
# ---------------------------- end of timestep ---------------------------- #
# ---------------------------- end of episode ---------------------------- #
# Housekeeping
del candidate_items
epoch += 1
print('Online Evaluation Finished')
print(f'Average Reward {np.mean(rewards):.4f} | ')
x = np.arange(len(actor_losses))
plt.plot(x, actor_losses, label="Test Actor")
plt.plot(x, critic_losses, label="Test Critic")
plt.legend()
plt.xlabel('Timestep (t)')
plt.ylabel('Loss')
plt.title('Actor and Critic Losses (Evaluation)')
plt.minorticks_on()
# Reload model parameters
self.load_parameters()
return np.mean(rewards)
def offline_evaluate(self, T):
# Load model parameters
self.load_parameters()
# Get test data ready
self.test_data = self.test_data.to(self.device)
# Init data tracking
# data_dict = {
# 'Timestep': 0,
# 'Training Rewards': 0,
# 'Loss': 0
# }
# fieldnames = [key for key, _ in data_dict.items()]
# csv_logger = CSVLogger(fieldnames=fieldnames,
# filename=self.config.csv_dir)
# Init buffers
history_buffer = HistoryBuffer(self.config.history_buffer_size)
# Init trackers
timesteps = epoch = 0
rewards = []
epi_precisions = []
e_arr = []
# Get users, shuffle, andgo through array
user_idxs = np.array(list(self.users.values()))
np.random.shuffle(user_idxs)
# Start episodes
for idx, e in enumerate(user_idxs):
# ---------------------------- start of episode ---------------------------- #
if len(e_arr) > self.config.max_epochs_offline:
break
# Extract user reviews and positive user reviews from test
user_reviews = self.test_data[self.test_data[:, self.u] == e]
pos_user_reviews = user_reviews[user_reviews[:, self.r] > 0]
# Move on to next user if not enough positive or regular reviews
if user_reviews.shape[0] < T or pos_user_reviews.shape[0] < self.config.history_buffer_size:
continue
# Sort user reviews by timestamp
user_reviews = user_reviews[user_reviews[:, self.ti].sort()[1]]
pos_user_reviews = pos_user_reviews[pos_user_reviews[:, self.ti].sort()[1]]
# Copy item embeddings to candidate item embeddings set
candidate_items = self.item_embeddings.detach().clone().to(self.device)
user_candidate_items = self.item_embeddings[user_reviews[:, self.i]].detach().clone().to(self.device)
# Extract user embedding tensor
user_emb = self.user_embeddings[e]
# Fill history buffer with positive user item embeddings and
# Remove item embeddings from candidate item set
ignored_items = []
for i in range(self.config.history_buffer_size):
emb = candidate_items[pos_user_reviews[i, self.i]]
history_buffer.push(emb.detach().clone())
# ignored_items.append(pos_user_reviews[i, self.i])
# Starting item index
t = 0
state = None
action = None
reward = None
next_state = None
while t < T:
# ---------------------------- start of timestep ---------------------------- #
# observe current state
# choose action according to actor network or exploration
with torch.no_grad():
state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
if np.random.uniform(0, 1) < self.config.eps_eval:
action = torch.from_numpy(0.1 * np.random.rand(self.action_shape)).float().to(self.device)
else:
action = self.actor_net(state.detach())
# Calculate ranking scores across items, discard ignored items
ranking_scores = candidate_items @ action
rec_items = torch.stack(ignored_items) if len(ignored_items) > 0 else []
ranking_scores[rec_items[:, self.i] if len(ignored_items) > 0 else []] = -float("inf")
# Get recommended item
rec_item_idx = torch.argmax(ranking_scores[user_reviews[:, self.i]])
rec_item_emb = user_candidate_items[rec_item_idx]
# Get item reward
reward = user_reviews[rec_item_idx, self.r]
# Track episode rewards
rewards.append(reward.item())
# Add item to history buffer if positive review, remove from candidate set
# Set next state to new or old
if reward > 0:
# Update history buffer with new item
history_buffer.push(rec_item_emb.detach().clone())
# Observe next state
with torch.no_grad():
next_state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
else:
# Keep history buffer the same, next state is current state
next_state = state.detach()
# Remove new item from future recommendations
ignored_items.append(user_reviews[rec_item_idx])
# Housekeeping
t += 1
timesteps += 1
# ---------------------------- end of timestep ---------------------------- #
# ---------------------------- end of episode ---------------------------- #
# T_indicies = np.arange(T)
# rel_real = user_reviews[T_indicies]
# rel_real = rel_real[rel_real[:, self.r] > 0]
rec_items = torch.stack(ignored_items)
rel_pred = rec_items[rec_items[:, self.r] > 0]
precision_T = len(rel_pred) / len(rec_items)
# Logging
epoch += 1
e_arr.append(epoch)
epi_precisions.append(precision_T)
if timesteps % self.config.log_freq == 0:
if len(rewards) > 0:
print(f'Episode {epoch} | '
f'Precision@{T} {precision_T} | '
f'Avg Precision@{T} {np.mean(epi_precisions):.4f} | '
)
sys.stdout.flush()
print('Offline Evaluation Finished')
print(f'Average Precision@{T}: {np.mean(epi_precisions):.4f} | ')
plt.plot(e_arr, epi_precisions, label=f'Precision@{T}')
# plt.plot(x, critic_losses, label="Test Critic")
plt.legend()
plt.xlabel('Episode (t)')
plt.ylabel('Precesion@T')
plt.title('Precision@T (Offline Evaluation)')
plt.minorticks_on()
# Reload model parameters
self.load_parameters()
return np.mean(epi_precisions)
def offline_pmf_evaluate(self, T):
# Load model parameters
self.load_parameters()
# Get test data ready
self.test_data = self.test_data.to(self.device)
# Init buffers
history_buffer = HistoryBuffer(self.config.history_buffer_size)
# Init trackers
timesteps = epoch = 0
rewards = []
epi_precisions = []
e_arr = []
# Get users, shuffle, andgo through array
user_idxs = np.array(list(self.users.values()))
np.random.shuffle(user_idxs)
candidate_item_idxs = np.arange(self.item_embeddings.shape[0])
candidate_item_idxs = torch.from_numpy(candidate_item_idxs).to(self.device).long()
# Start episodes
for idx, e in enumerate(user_idxs):
# ---------------------------- start of episode ---------------------------- #
if len(e_arr) > self.config.max_epochs_offline:
break
# Extract user reviews and positive user reviews from test
user_reviews = self.test_data[self.test_data[:, self.u] == e]
pos_user_reviews = user_reviews[user_reviews[:, self.r] > 0]
# Move on to next user if not enough positive or regular reviews
if user_reviews.shape[0] < T or pos_user_reviews.shape[0] < self.config.history_buffer_size:
continue
# Sort user reviews by timestamp
user_reviews = user_reviews[user_reviews[:, self.ti].sort()[1]]
pos_user_reviews = pos_user_reviews[pos_user_reviews[:, self.ti].sort()[1]]
# Copy item embeddings to candidate item embeddings set
candidate_items = self.item_embeddings.detach().clone().to(self.device)
user_candidate_items = self.item_embeddings[user_reviews[:, self.i]].detach().clone().to(self.device)
# Extract user embedding tensor
user_emb = self.user_embeddings[e]
user_emb_exp = torch.tensor(e).expand(candidate_item_idxs.shape).to(self.device).long()
# Fill history buffer with positive user item embeddings and
# Remove item embeddings from candidate item set
ignored_items = []
for i in range(self.config.history_buffer_size):
emb = candidate_items[pos_user_reviews[i, self.i]]
history_buffer.push(emb.detach().clone())
# Starting item index
t = 0
state = None
action = None
reward = None
next_state = None
while t < T:
# ---------------------------- start of timestep ---------------------------- #
# observe current state
# choose action according to actor network or exploration
# with torch.no_grad():
# state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
# if np.random.uniform(0, 1) < self.config.eps_eval:
# action = torch.from_numpy(0.1 * np.random.rand(self.action_shape)).float().to(self.device)
# else:
# action = self.actor_net(state.detach())
# Calculate ranking scores across items, discard ignored items
ranking_scores = self.reward_function(user_emb_exp, candidate_item_idxs)
rec_items = torch.stack(ignored_items) if len(ignored_items) > 0 else []
ranking_scores[rec_items[:, self.i] if len(ignored_items) > 0 else []] = -float("inf")
# Get recommended item
rec_item_idx = torch.argmax(ranking_scores[user_reviews[:, self.i]])
rec_item_emb = user_candidate_items[rec_item_idx]
# Get item reward
reward = user_reviews[rec_item_idx, self.r]
# Track episode rewards
rewards.append(reward.item())
# Add item to history buffer if positive review, remove from candidate set
# Set next state to new or old
if reward > 0:
# Update history buffer with new item
history_buffer.push(rec_item_emb.detach().clone())
# Observe next state
# with torch.no_grad():
# next_state = self.state_rep_net(user_emb, torch.stack(history_buffer.to_list()))
# else:
# Keep history buffer the same, next state is current state
# next_state = state.detach()
# Remove new item from future recommendations
ignored_items.append(user_reviews[rec_item_idx])
# Housekeeping
t += 1
timesteps += 1
# ---------------------------- end of timestep ---------------------------- #
# ---------------------------- end of episode ---------------------------- #
# T_indicies = np.arange(T)
# rel_real = user_reviews[T_indicies]
# rel_real = rel_real[rel_real[:, self.r] > 0]
rec_items = torch.stack(ignored_items)
rel_pred = rec_items[rec_items[:, self.r] > 0]
precision_T = len(rel_pred) / len(rec_items)
# Logging
epoch += 1
e_arr.append(epoch)
epi_precisions.append(precision_T)
if timesteps % self.config.log_freq == 0:
if len(rewards) > 0:
print(f'Episode {epoch} | '
f'Precision@{T} {precision_T} | '
f'Avg Precision@{T} {np.mean(epi_precisions):.4f} | '
)
sys.stdout.flush()
print('Offline Evaluation Finished')
print(f'Average Precision@{T}: {np.mean(epi_precisions):.4f} | ')
plt.plot(e_arr, epi_precisions, label=f'Precision@{T}')
# plt.plot(x, critic_losses, label="Test Critic")
plt.legend()
plt.xlabel('Episode (t)')
plt.ylabel('Precesion@T')
plt.title('Precision@T (Offline Evaluation)')
plt.minorticks_on()
# Reload model parameters
self.load_parameters()
return np.mean(epi_precisions)