forked from Om-Alve/smolGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_chat.py
223 lines (192 loc) · 6.88 KB
/
train_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import time
import math
import wandb
import torch
import numpy as np
from pathlib import Path
from functools import partial
from torch.nn import functional as F
from torch.utils.tensorboard.writer import SummaryWriter
from model import GPT
from config import GPTConfig, TrainingConfig
from dataset import Task
# Constants
DATA_DIR = Path("data")
OUT_DIR = Path("out")
CHECKPOINT_DIR = OUT_DIR / "checkpoints_chat"
CHECKPOINT_DIR.mkdir(exist_ok=True, parents=True)
def get_gpu_memory():
"""Get GPU memory usage in GB"""
if torch.cuda.is_available():
return torch.cuda.memory_allocated() / 1024**3, torch.cuda.memory_reserved() / 1024**3
return 0, 0
def save_checkpoint(model, optimizer, iter_num, best_val_loss, is_best=False):
"""Save model checkpoint"""
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model.config.__dict__,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
}
# Save checkpoint
if is_best:
checkpoint_path = CHECKPOINT_DIR / "best_checkpoint_chat.pt"
# Log best model to wandb
wandb.run.summary["best_val_loss"] = best_val_loss
wandb.run.summary["best_iter"] = iter_num
else:
checkpoint_path = CHECKPOINT_DIR / f"checkpoint_chat_{iter_num:07d}.pt"
torch.save(checkpoint, checkpoint_path)
# Cleanup old checkpoints - keep only 3 most recent
if not is_best:
checkpoints = sorted([f for f in os.listdir(CHECKPOINT_DIR) if f.startswith("checkpoint_chat_")])
while len(checkpoints) > 3:
os.remove(CHECKPOINT_DIR / checkpoints[0])
checkpoints.pop(0)
def main():
# Model configuration
model_config = GPTConfig(
block_size=1024,
vocab_size=8192, # Reduced from 32000
n_layer=8, # Reduced from 12
n_head=8, # Reduced from 12
n_embed=512, # Reduced from 768
dropout=0.1,
bias=False,
use_rotary=True
)
# Training configuration
train_config = TrainingConfig(
batch_size=16, # Reduced from 32
learning_rate=6e-4,
max_iters=50000,
weight_decay=1e-1,
beta1=0.9,
beta2=0.95,
grad_clip=1.0,
decay_lr=True,
warmup_iters=2000,
lr_decay_iters=50000,
min_lr=6e-5,
eval_interval=100,
eval_iters=200,
log_interval=10
)
# Initialize wandb
wandb.init(
project="backgpt_chat",
config={
# Model config
"n_layer": model_config.n_layer,
"n_head": model_config.n_head,
"n_embed": model_config.n_embed,
"block_size": model_config.block_size,
"vocab_size": model_config.vocab_size,
"dropout": model_config.dropout,
# Training config
"batch_size": train_config.batch_size,
"learning_rate": train_config.learning_rate,
"weight_decay": train_config.weight_decay,
"warmup_iters": train_config.warmup_iters,
"max_iters": train_config.max_iters,
"grad_clip": train_config.grad_clip,
}
)
# Set up logging
writer = SummaryWriter(log_dir=OUT_DIR / "logs_chat")
# Initialize model
torch.manual_seed(42)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = GPT(model_config)
model.to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
# Optimizer
optimizer = model.configure_optimizers(
train_config.weight_decay,
train_config.learning_rate,
(train_config.beta1, train_config.beta2),
device
)
# Dataset iterator
iter_batches = partial(
Task.iter_batches,
batch_size=train_config.batch_size,
max_seq_len=model_config.block_size,
device=device,
num_workers=0,
dataset="chat" # New dataset type
)
# Training loop
best_val_loss = float('inf')
iter_num = 0
train_batch_iter = iter_batches(split="train")
t0 = time.time()
while True:
# Get the next batch
try:
batch = next(train_batch_iter)
except StopIteration:
train_batch_iter = iter_batches(split="train")
batch = next(train_batch_iter)
# Determine and set the learning rate for this iteration
if train_config.decay_lr:
lr = train_config.get_lr(iter_num)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Forward backward update
x, y = batch
logits, loss = model(x, y)
loss = loss.mean() # Collapse all losses if they are scattered
# Backward pass
model.zero_grad(set_to_none=True)
loss.backward()
if train_config.grad_clip != 0.0:
torch.nn.utils.clip_grad_norm_(model.parameters(), train_config.grad_clip)
optimizer.step()
# Timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % train_config.log_interval == 0:
print(f"iter {iter_num}: loss {loss.item():.4f}, time {dt*1000:.2f}ms")
wandb.log({
"train/loss": loss.item(),
"train/lr": optimizer.param_groups[0]["lr"],
}, step=iter_num)
if iter_num > 0 and iter_num % train_config.eval_interval == 0:
# Evaluate the model
model.eval()
losses = torch.zeros(train_config.eval_iters)
for k in range(train_config.eval_iters):
with torch.no_grad():
batch = next(iter_batches(split="val"))
X, Y = batch
logits, loss = model(X, Y)
losses[k] = loss.mean()
val_loss = losses.mean()
model.train()
# Log validation metrics
print(f"step {iter_num}: val loss {val_loss:.4f}")
wandb.log({
"val/loss": val_loss,
}, step=iter_num)
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
save_checkpoint(model, optimizer, iter_num, best_val_loss, is_best=True)
# Regular checkpoint save
if iter_num % 1000 == 0:
save_checkpoint(model, optimizer, iter_num, val_loss)
iter_num += 1
# Termination conditions
if iter_num > train_config.max_iters:
break
# Final save
save_checkpoint(model, optimizer, iter_num, val_loss)
wandb.finish()
if __name__ == '__main__':
main()