-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcluster-analysis.qmd
765 lines (597 loc) · 21.9 KB
/
cluster-analysis.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# Cluster Analysis {#sec-clusterAnalysis}
## Getting Started {#sec-clusterAnalysisGettingStarted}
### Load Packages {#sec-clusterAnalysisLoadPackages}
```{r}
library("petersenlab")
library("nflreadr")
library("mclust")
library("plotly")
library("tidyverse")
```
### Load Data {#sec-clusterAnalysisLoadData}
```{r}
#| eval: false
#| include: false
load(file = "./data/nfl_players.RData")
load(file = "./data/nfl_combine.RData")
load(file = file.path(path, "/OneDrive - University of Iowa/Teaching/Courses/Fantasy Football/Data/player_stats_weekly.RData", fsep = ""))
load(file = file.path(path, "/OneDrive - University of Iowa/Teaching/Courses/Fantasy Football/Data/player_stats_seasonal.RData", fsep = ""))
load(file = "./data/nfl_advancedStatsPFR_seasonal.RData")
load(file = "./data/nfl_actualStats_career.RData")
```
```{r}
load(file = "./data/nfl_players.RData")
load(file = "./data/nfl_combine.RData")
load(file = "./data/player_stats_weekly.RData")
load(file = "./data/player_stats_seasonal.RData")
load(file = "./data/nfl_advancedStatsPFR_seasonal.RData")
load(file = "./data/nfl_actualStats_career.RData")
```
### Overview {#sec-clusterAnalysisOverview}
Whereas [factor analysis](#sec-factorAnalysis) evaluates how *variables* do or do not hang together—in terms of their associations and non-associations, cluster analysis evaluates how *people* are or or not similar—in terms of their scores on one or more variables.
The goal of cluster analysis is to identify distinguishable subgroups of people.
The people within a subgroup are expected to be more similar to each other than they are to people in other subgroups.
For instance, we might expect that there are distinguishable subtypes of Wide Receivers: possession, deep threats, and slot-type Wide Receivers.
Possession Wide Receivers tend to be taller and heavier, with good hands who catch the ball at a high rate.
Deep threat Wide Receivers tend to be fast.
Slot-type Wide Receivers tend to be small, quick, and agile.
In order to identify these clusters of Wide Receivers, we might conduct a cluster analysis with variables relating to the players' height, weight, percent of (catchable) targets caught, air yards received, and various metrics from the National Football League (NFL) Combine, including their times in the 40-yard dash, 20-yard shuttle run, and three cone drill.
There are many approaches to cluster analysis, including model-based clustering, density-based clustering, centroid-based clustering, hierarchical clustering (aka connectivity-based clustering), etc.
An overview of approaches to cluster analysis in `R` is provided by @Kassambara2017a.
In this chapter, we focus on examples using model-based clustering with the `mclust` package [@Scrucca2023], which uses Gaussian finite mixture modeling.
The various types of `mclust` models are provided here:
<https://mclust-org.github.io/mclust/reference/mclustModelNames.html>.
### Tiers of Prior Season Fantasy Points {#sec-clusterAnalysisExample}
#### Prepare Data {#sec-clusterAnalysisExamplePrepareData}
```{r}
recentSeason <- max(player_stats_seasonal$season, na.rm = TRUE) # also works: nflreadr::most_recent_season()
recentSeason
player_stats_seasonal_offense_recent <- player_stats_seasonal %>%
filter(season == recentSeason) %>%
filter(position_group %in% c("QB","RB","WR","TE"))
player_stats_seasonal_offense_recentQB <- player_stats_seasonal_offense_recent %>%
filter(position_group == "QB")
player_stats_seasonal_offense_recentRB <- player_stats_seasonal_offense_recent %>%
filter(position_group == "RB")
player_stats_seasonal_offense_recentWR <- player_stats_seasonal_offense_recent %>%
filter(position_group == "WR")
player_stats_seasonal_offense_recentTE <- player_stats_seasonal_offense_recent %>%
filter(position_group == "TE")
```
#### Identify the Optimal Number of Tiers by Position {#sec-clusterAnalysisExampleNumTiers}
##### Quarterbacks {#sec-clusterAnalysisExampleNumTiersQBs}
```{r}
tiersQB_bic <- mclust::mclustBIC(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
G = 1:9
)
tiersQB_bic
summary(tiersQB_bic)
plot(tiersQB_bic)
tiersQB_icl <- mclust::mclustICL(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
G = 1:9
)
tiersQB_icl
summary(tiersQB_icl)
plot(tiersQB_icl)
tiersQB_boostrap <- mclust::mclustBootstrapLRT(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
modelName = "V") # variable/unequal variance (for univariate data)
numTiersQB <- as.numeric(summary(tiersQB_boostrap)[,"Length"][1]) # or could specify the number of teams manually
tiersQB_boostrap
plot(
tiersQB_boostrap,
G = numTiersQB - 1)
```
##### Running Backs {#sec-clusterAnalysisExampleNumTiersRBs}
```{r}
tiersRB_bic <- mclust::mclustBIC(
data = player_stats_seasonal_offense_recentRB$fantasyPoints,
G = 1:9
)
tiersRB_bic
summary(tiersRB_bic)
plot(tiersRB_bic)
tiersRB_icl <- mclust::mclustICL(
data = player_stats_seasonal_offense_recentRB$fantasyPoints,
G = 1:9
)
tiersRB_icl
summary(tiersRB_icl)
plot(tiersRB_icl)
numTiersRB <- 3
```
The model-based bootstrap clustering of Running Backs' fantasy points is unable to run due to an error:
```{r}
tiersRB_boostrap <- mclust::mclustBootstrapLRT(
data = player_stats_seasonal_offense_recentRB$fantasyPoints,
modelName = "V") # variable/unequal variance (for univariate data)
```
Thus, we cannot use the following code, which would otherwise summarize the model results, specify the number of tiers, and plot model comparisons:
```{r}
#| eval: false
numTiersRB <- as.numeric(summary(tiersRB_boostrap)[,"Length"][1]) # or could specify the number of teams manually
tiersRB_boostrap
plot(
tiersRB_boostrap,
G = numTiersRB - 1)
```
##### Wide Receivers {#sec-clusterAnalysisExampleNumTiersWRs}
```{r}
tiersWR_bic <- mclust::mclustBIC(
data = player_stats_seasonal_offense_recentWR$fantasyPoints,
G = 1:9
)
tiersWR_bic
summary(tiersWR_bic)
plot(tiersWR_bic)
tiersWR_icl <- mclust::mclustICL(
data = player_stats_seasonal_offense_recentWR$fantasyPoints,
G = 1:9
)
tiersWR_icl
summary(tiersWR_icl)
plot(tiersWR_icl)
tiersWR_boostrap <- mclust::mclustBootstrapLRT(
data = player_stats_seasonal_offense_recentWR$fantasyPoints,
modelName = "V") # variable/unequal variance (for univariate data)
numTiersWR <- as.numeric(summary(tiersWR_boostrap)[,"Length"][1]) # or could specify the number of teams manually
tiersWR_boostrap
plot(
tiersWR_boostrap,
G = numTiersWR - 1)
```
##### Tight Ends {#sec-clusterAnalysisExampleNumTiersTEs}
```{r}
tiersTE_bic <- mclust::mclustBIC(
data = player_stats_seasonal_offense_recentTE$fantasyPoints,
G = 1:9
)
tiersTE_bic
summary(tiersTE_bic)
plot(tiersTE_bic)
tiersTE_icl <- mclust::mclustICL(
data = player_stats_seasonal_offense_recentTE$fantasyPoints,
G = 1:9
)
tiersTE_icl
summary(tiersTE_icl)
plot(tiersTE_icl)
tiersTE_boostrap <- mclust::mclustBootstrapLRT(
data = player_stats_seasonal_offense_recentTE$fantasyPoints,
modelName = "V") # variable/unequal variance (for univariate data)
numTiersTE <- as.numeric(summary(tiersTE_boostrap)[,"Length"][1]) # or could specify the number of teams manually
tiersTE_boostrap
plot(
tiersTE_boostrap,
G = numTiersTE - 1)
```
#### Fit the Cluster Model to the Optimal Number of Tiers {#sec-clusterAnalysisExampleModel}
##### Quarterbacks {#sec-clusterAnalysisExampleModelQBs}
In our data, all of the following models are equivalent—i.e., they result in the same unequal variance model with a 4-cluster solution—but they arrive there in different ways.
```{r}
#| eval: false
mclust::Mclust(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
G = numTiersQB,
)
mclust::Mclust(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
G = 4,
)
mclust::Mclust(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
)
mclust::Mclust(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
x = tiersQB_bic
)
```
Let's fit one of these:
```{r}
clusterModelQBs <- mclust::Mclust(
data = player_stats_seasonal_offense_recentQB$fantasyPoints,
G = numTiersQB,
)
```
Here are the number of players that are in each of the four clusters (i.e., tiers):
```{r}
table(clusterModelQBs$classification)
```
##### Running Backs {#sec-clusterAnalysisExampleModelRBs}
```{r}
clusterModelRBs <- mclust::Mclust(
data = player_stats_seasonal_offense_recentRB$fantasyPoints,
G = numTiersRB,
)
```
Here are the number of players that are in each of the four clusters (i.e., tiers):
```{r}
table(clusterModelRBs$classification)
```
##### Wide Receivers {#sec-clusterAnalysisExampleModelWRs}
```{r}
clusterModelWRs <- mclust::Mclust(
data = player_stats_seasonal_offense_recentWR$fantasyPoints,
G = numTiersWR,
)
```
Here are the number of players that are in each of the four clusters (i.e., tiers):
```{r}
table(clusterModelWRs$classification)
```
##### Tight Ends {#sec-clusterAnalysisExampleModelTEs}
```{r}
clusterModelTEs <- mclust::Mclust(
data = player_stats_seasonal_offense_recentTE$fantasyPoints,
G = numTiersTE,
)
```
Here are the number of players that are in each of the four clusters (i.e., tiers):
```{r}
table(clusterModelTEs$classification)
```
#### Plot the Tiers {#sec-clusterAnalysisExamplePlotTiers}
We can merge the player's classification into the dataset and plot each player's classification.
##### Quarterbacks {#sec-clusterAnalysisExamplePlotTiersQB}
```{r}
#| label: fig-qbTiers
#| fig-cap: "Quarterback Fantasy Points by Tier."
#| fig-alt: "Quarterback Fantasy Points by Tier."
player_stats_seasonal_offense_recentQB$tier <- clusterModelQBs$classification
player_stats_seasonal_offense_recentQB <- player_stats_seasonal_offense_recentQB %>%
mutate(
tier = factor(max(tier, na.rm = TRUE) + 1 - tier)
)
player_stats_seasonal_offense_recentQB$position_rank <- rank(
player_stats_seasonal_offense_recentQB$fantasyPoints * -1,
na.last = "keep",
ties.method = "min")
plot_qbTiers <- ggplot2::ggplot(
data = player_stats_seasonal_offense_recentQB,
mapping = aes(
x = fantasyPoints,
y = position_rank,
color = tier
)) +
geom_point(
aes(
text = player_display_name # add player name for mouse over tooltip
)) +
scale_y_continuous(trans = "reverse") +
coord_cartesian(clip = "off") +
labs(
x = "Projected Points",
y = "Position Rank",
title = "Quarterback Fantasy Points by Tier",
color = "Tier") +
theme_classic() +
theme(legend.position = "top")
ggplotly(plot_qbTiers)
```
##### Running Backs {#sec-clusterAnalysisExamplePlotTiersRBs}
```{r}
#| label: fig-rbTiers
#| fig-cap: "Running Back Fantasy Points by Tier."
#| fig-alt: "Running Back Fantasy Points by Tier."
player_stats_seasonal_offense_recentRB$tier <- clusterModelRBs$classification
player_stats_seasonal_offense_recentRB <- player_stats_seasonal_offense_recentRB %>%
mutate(
tier = factor(max(tier, na.rm = TRUE) + 1 - tier)
)
player_stats_seasonal_offense_recentRB$position_rank <- rank(
player_stats_seasonal_offense_recentRB$fantasyPoints * -1,
na.last = "keep",
ties.method = "min")
plot_rbTiers <- ggplot2::ggplot(
data = player_stats_seasonal_offense_recentRB,
mapping = aes(
x = fantasyPoints,
y = position_rank,
color = tier
)) +
geom_point(
aes(
text = player_display_name # add player name for mouse over tooltip
)) +
scale_y_continuous(trans = "reverse") +
coord_cartesian(clip = "off") +
labs(
x = "Projected Points",
y = "Position Rank",
title = "Running Back Fantasy Points by Tier",
color = "Tier") +
theme_classic() +
theme(legend.position = "top")
ggplotly(plot_rbTiers)
```
##### Wide Receivers {#sec-clusterAnalysisExamplePlotTiersWRs}
```{r}
#| label: fig-wrTiers
#| fig-cap: "Quarterback Fantasy Points by Tier."
#| fig-alt: "Quarterback Fantasy Points by Tier."
player_stats_seasonal_offense_recentWR$tier <- clusterModelWRs$classification
player_stats_seasonal_offense_recentWR <- player_stats_seasonal_offense_recentWR %>%
mutate(
tier = factor(max(tier, na.rm = TRUE) + 1 - tier)
)
player_stats_seasonal_offense_recentWR$position_rank <- rank(
player_stats_seasonal_offense_recentWR$fantasyPoints * -1,
na.last = "keep",
ties.method = "min")
plot_wrTiers <- ggplot2::ggplot(
data = player_stats_seasonal_offense_recentWR,
mapping = aes(
x = fantasyPoints,
y = position_rank,
color = tier
)) +
geom_point(
aes(
text = player_display_name # add player name for mouse over tooltip
)) +
scale_y_continuous(trans = "reverse") +
coord_cartesian(clip = "off") +
labs(
x = "Projected Points",
y = "Position Rank",
title = "Wide Receiver Fantasy Points by Tier",
color = "Tier") +
theme_classic() +
theme(legend.position = "top")
ggplotly(plot_wrTiers)
```
##### Tight Ends {#sec-clusterAnalysisExamplePlotTiersTEs}
```{r}
#| label: fig-teTiers
#| fig-cap: "Tight End Fantasy Points by Tier."
#| fig-alt: "Tight End Fantasy Points by Tier."
player_stats_seasonal_offense_recentTE$tier <- clusterModelTEs$classification
player_stats_seasonal_offense_recentTE <- player_stats_seasonal_offense_recentTE %>%
mutate(
tier = factor(max(tier, na.rm = TRUE) + 1 - tier)
)
player_stats_seasonal_offense_recentTE$position_rank <- rank(
player_stats_seasonal_offense_recentTE$fantasyPoints * -1,
na.last = "keep",
ties.method = "min")
plot_teTiers <- ggplot2::ggplot(
data = player_stats_seasonal_offense_recentTE,
mapping = aes(
x = fantasyPoints,
y = position_rank,
color = tier
)) +
geom_point(
aes(
text = player_display_name # add player name for mouse over tooltip
)) +
scale_y_continuous(trans = "reverse") +
coord_cartesian(clip = "off") +
labs(
x = "Projected Points",
y = "Position Rank",
title = "Tight End Fantasy Points by Tier",
color = "Tier") +
theme_classic() +
theme(legend.position = "top")
ggplotly(plot_teTiers)
```
### Types of Wide Receivers {#sec-clusterAnalysisWRtypes}
```{r}
#| eval: false
#| include: false
#names(nfl_players) #gsis_id: height, weight
#names(nfl_combine) #gsis_id: vertical, forty, ht, wt
#names(player_stats_seasonal_offense) #player_id, season: receptions, receiving_air_yards, air_yards_share, target_share
#names(nfl_advancedStatsPFR_seasonal) #gsis_id, season: adot.rec, rec.rec, brk_tkl.rec, drop.rec, drop_percent.rec
#names(nfl_actualStats_offense_career) #player_id: receptions, targets, receiving_air_yards, air_yards_share, target_share
```
```{r}
# Compute Advanced PFR Stats by Career
pfrVars <- nfl_advancedStatsPFR_seasonal %>%
select(pocket_time.pass:cmp_percent.def, g, gs) %>%
names()
weightedAverageVars <- c(
"pocket_time.pass",
"ybc_att.rush","yac_att.rush",
"ybc_r.rec","yac_r.rec","adot.rec","rat.rec",
"yds_cmp.def","yds_tgt.def","dadot.def","m_tkl_percent.def","rat.def"
)
recomputeVars <- c(
"drop_pct.pass", # drops.pass / pass_attempts.pass
"bad_throw_pct.pass", # bad_throws.pass / pass_attempts.pass
"on_tgt_pct.pass", # on_tgt_throws.pass / pass_attempts.pass
"pressure_pct.pass", # times_pressured.pass / pass_attempts.pass
"drop_percent.rec", # drop.rec / tgt.rec
"rec_br.rec", # rec.rec / brk_tkl.rec
"cmp_percent.def" # cmp.def / tgt.def
)
sumVars <- pfrVars[pfrVars %ni% c(
weightedAverageVars, recomputeVars,
"merge_name", "loaded.pass", "loaded.rush", "loaded.rec", "loaded.def")]
nfl_advancedStatsPFR_career <- nfl_advancedStatsPFR_seasonal %>%
group_by(pfr_id, merge_name) %>%
summarise(
across(all_of(weightedAverageVars), ~ weighted.mean(.x, w = g, na.rm = TRUE)),
across(all_of(sumVars), ~ sum(.x, na.rm = TRUE)),
.groups = "drop") %>%
mutate(
drop_pct.pass = drops.pass / pass_attempts.pass,
bad_throw_pct.pass = bad_throws.pass / pass_attempts.pass,
on_tgt_pct.pass = on_tgt_throws.pass / pass_attempts.pass,
pressure_pct.pass = times_pressured.pass / pass_attempts.pass,
drop_percent.rec = drop.rec / tgt.rec,
rec_br.rec = drop.rec / tgt.rec,
cmp_percent.def = cmp.def / tgt.def
)
uniqueCases <- nfl_advancedStatsPFR_seasonal %>% select(pfr_id, merge_name, gsis_id) %>% unique()
uniqueCases %>%
group_by(pfr_id) %>%
filter(n() > 1)
nfl_advancedStatsPFR_seasonal <- nfl_advancedStatsPFR_seasonal %>%
filter(pfr_id != "WillMa06" | merge_name != "MARCUSWILLIAMS" | !is.na(gsis_id))
nfl_advancedStatsPFR_career <- left_join(
nfl_advancedStatsPFR_career,
nfl_advancedStatsPFR_seasonal %>% select(pfr_id, merge_name, gsis_id) %>% unique(),
by = c("pfr_id", "merge_name")
)
# Compute Player Stats Per Season
player_stats_seasonal_careerWRs <- player_stats_seasonal %>%
filter(position == "WR") %>%
group_by(player_id) %>%
summarise(
across(all_of(c("targets", "receptions", "receiving_air_yards")), ~ weighted.mean(.x, w = games, na.rm = TRUE)),
.groups = "drop")
# Drop players with no receiving air yards
player_stats_seasonal_careerWRs <- player_stats_seasonal_careerWRs %>%
filter(receiving_air_yards != 0) %>%
rename(
targets_per_season = targets,
receptions_per_season = receptions,
receiving_air_yards_per_season = receiving_air_yards
)
# Merge
playerListToMerge <- list(
nfl_players %>% select(gsis_id, display_name, position, height, weight),
nfl_combine %>% select(gsis_id, vertical, forty, ht, wt),
player_stats_seasonal_careerWRs %>% select(player_id, targets_per_season, receptions_per_season, receiving_air_yards_per_season) %>%
rename(gsis_id = player_id),
nfl_actualStats_offense_career %>% select(player_id, receptions, targets, receiving_air_yards, air_yards_share, target_share) %>%
rename(gsis_id = player_id),
nfl_advancedStatsPFR_career %>% select(gsis_id, adot.rec, rec.rec, brk_tkl.rec, drop.rec, drop_percent.rec)
)
merged_data <- playerListToMerge %>%
reduce(
full_join,
by = c("gsis_id"),
na_matches = "never")
```
Additional processing:
```{r}
merged_data <- merged_data %>%
mutate(
height_coalesced = coalesce(height, ht),
weight_coalesced = coalesce(weight, wt),
receptions_coalesced = pmax(receptions, rec.rec, na.rm = TRUE),
receiving_air_yards_per_rec = receiving_air_yards / receptions
)
merged_data$receiving_air_yards_per_rec[which(merged_data$receptions == 0)] <- 0
merged_dataWRs <- merged_data %>%
filter(position == "WR")
merged_dataWRs_cluster <- merged_dataWRs %>%
filter(receptions_coalesced >= 100) %>% # keep WRs with at least 100 receptions
select(gsis_id, display_name, vertical, forty, height_coalesced, weight_coalesced, adot.rec, drop_percent.rec, receiving_air_yards_per_rec, brk_tkl.rec, receptions_per_season) %>% #targets_per_season, receiving_air_yards_per_season, air_yards_share, target_share
na.omit()
```
#### Identify the Number of WR Types {#sec-clusterAnalysisNumWRtypes}
```{r}
wrTypes_bic <- mclust::mclustBIC(
data = merged_dataWRs_cluster %>% select(-gsis_id, -display_name),
G = 1:9
)
wrTypes_bic
summary(wrTypes_bic)
plot(wrTypes_bic)
wrTypes_icl <- mclust::mclustICL(
data = merged_dataWRs_cluster %>% select(-gsis_id, -display_name),
G = 1:9
)
wrTypes_icl
summary(wrTypes_icl)
plot(wrTypes_icl)
```
Based on the cluster analyses, it appears that three clusters are the best fit to the data.
```{r}
numTypesWR <- 3
```
```{r}
#| eval: false
wrTypes_boostrap <- mclust::mclustBootstrapLRT(
data = merged_dataWRs_cluster %>% select(-gsis_id, -display_name),
modelName = "EVE") # ellipsoidal with equal volume, variable shape, and equal orientation (for multivariate data)
wrTypes_boostrap
plot(
wrTypes_boostrap,
G = numTypesWR - 1)
```
#### Fit the Cluster Model to the Optimal Number of WR Types {#sec-clusterAnalysisModelWRtypes}
```{r}
clusterModelWRtypes <- mclust::Mclust(
data = merged_dataWRs_cluster %>% select(-gsis_id, -display_name),
G = numTypesWR,
)
summary(clusterModelWRtypes)
```
#### Plots of the Cluster Model {#sec-clusterAnalysisPlotsWRtypes}
```{r}
plot(
clusterModelWRtypes,
what = "BIC")
```
```{r}
plot(
clusterModelWRtypes,
what = "classification")
```
```{r}
plot(
clusterModelWRtypes,
what = "uncertainty")
```
```{r}
plot(
clusterModelWRtypes,
what = "density")
```
#### Interpreting the Clusters {#sec-clusterAnalysisInterpretationWRtypes}
```{r}
table(clusterModelWRtypes$classification)
merged_dataWRs_cluster$type <- clusterModelWRtypes$classification
merged_dataWRs_cluster %>%
group_by(type) %>%
summarise(across(
where(is.numeric),
~ mean(., na.rm = TRUE)
)) %>%
t() %>%
round(., 2)
```
Based on this analysis (and the variables included), there appear to be three types of Wide Receivers.
Type 1 Wide Receivers includes the Elite WR1s who are strong possession receivers (note: not all players in a given cluster map on perfectly to the typology—i.e., not all Type 1 Wide Receivers are elite WR1s).
They tend to have the lowest drop percentage, the shortest average depth of target, and the fewest receiving air yards per reception.
They tend to have the most receptions per season and break the most tackles.
Type 2 Wide Receivers includes the consistent contributor, WR2 types.
They had fewer receptions and fewer broken tackles than Type 1 Wide Receivers.
Their average depth of target was longer than Type 1, and they had more receiving air yards per reception than Type 1.
Type 3 Wide Receivers includes the deep threats.
They have the greatest average depth of target and the most receiving yards per reception.
However, they also have the fewest receptions, the highest drop percentage, and the fewest broken tackles.
Thus, they may be considered the boom-or-bust Wide Receivers.
The tiers were not particularly distinguishable based on their height, weight, vertical jump, or forty-yard dash time.
Type 1 ("Elite/WR1") WRs:
```{r}
merged_dataWRs_cluster %>%
filter(type == 1) %>%
select(display_name)
```
Type 2 ("Consistent Contributor/WR2") WRs:
```{r}
merged_dataWRs_cluster %>%
filter(type == 2) %>%
select(display_name)
```
Type 3 ("Deep Threat/Boom-or-Bust") WRs:
```{r}
merged_dataWRs_cluster %>%
filter(type == 3) %>%
select(display_name)
```
## Conclusion {#sec-clusterAnalysisConclusion}
::: {.content-visible when-format="html"}
## Session Info {#sec-clusterAnalysisSessionInfo}
```{r}
sessionInfo()
```
:::