-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path044.py
74 lines (57 loc) · 1.99 KB
/
044.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Problem:
We can determine how "out of order" an array A is by counting the number of inversions
it has. Two elements A[i] and A[j] form an inversion if A[i] > A[j] but i < j. That is,
a smaller element appears after a larger element.
Given an array, count the number of inversions it has. Do this faster than O(N^2) time.
You may assume each element in the array is distinct.
For example, a sorted list has zero inversions. The array [2, 4, 1, 3, 5] has three
inversions: (2, 1), (4, 1), and (4, 3). The array [5, 4, 3, 2, 1] has ten inversions:
every distinct pair forms an inversion.
"""
from typing import List, Tuple
def merge(part_a: List[int], part_b: List[int]) -> Tuple[List[int], int]:
# helper function for merge sort
i, j = 0, 0
merged_array = []
a, a_inv = part_a
b, b_inv = part_b
inversions = a_inv + b_inv
length_a, length_b = len(a), len(b)
# merging the arrays
while i < length_a and j < length_b:
if a[i] < b[j]:
merged_array.append(a[i])
i += 1
else:
merged_array.append(b[j])
inversions += length_a - i
j += 1
while i < length_a:
merged_array.append(a[i])
i += 1
while j < length_b:
merged_array.append(b[j])
j += 1
return merged_array, inversions
def merge_sort(arr: List[int]) -> Tuple[List[int], int]:
length = len(arr)
if length in (0, 1):
return arr, 0
mid = length // 2
merged_array, inversions = merge(merge_sort(arr[:mid]), merge_sort(arr[mid:]))
return merged_array, inversions
def count_inversions(arr: List[int]) -> int:
_, inversions = merge_sort(arr)
return inversions
if __name__ == "__main__":
print(count_inversions([1, 2, 3, 4, 5]))
print(count_inversions([2, 1, 3, 4, 5]))
print(count_inversions([2, 4, 1, 3, 5]))
print(count_inversions([2, 6, 1, 3, 7]))
print(count_inversions([5, 4, 3, 2, 1]))
"""
SPECS:
TIME COMPLEXITY: O(n x log(n))
SPACE COMPLEXITY: O(log(n))
"""