-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path144.py
54 lines (40 loc) · 1.68 KB
/
144.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""
Problem:
Given an array of numbers and an index i, return the index of the nearest larger number
of the number at index i, where distance is measured in array indices.
For example, given [4, 1, 3, 5, 6] and index 0, you should return 3.
If two distances to larger numbers are equal, then return any one of them. If the array
at i doesn't have a nearest larger integer, then return null.
Follow-up: If you can preprocess the array, can you do this in constant time?
"""
from typing import Dict, List
def preprocess(arr: List[int]) -> Dict[int, int]:
preprocessed_indices = {}
length = len(arr)
sorted_tuples = [(value, index) for index, value in enumerate(arr)]
sorted_tuples.sort(key=lambda tup: tup[0])
# generating the minimum distance index
for k, (_, i) in enumerate(sorted_tuples[:-1]):
min_dist = length
for m in range(k + 1, length):
dist_temp = abs(i - sorted_tuples[m][1])
if dist_temp < min_dist:
min_dist = dist_temp
preprocessed_indices[i] = sorted_tuples[m][1]
return preprocessed_indices
def nearest_larger_value_index(arr: List[int], index: int) -> int:
preprocessed_indices = preprocess(arr)
if index not in preprocessed_indices:
return None
return preprocessed_indices[index]
if __name__ == "__main__":
print(nearest_larger_value_index([4, 1, 3, 5, 6], 0))
print(nearest_larger_value_index([4, 1, 3, 5, 6], 1))
print(nearest_larger_value_index([4, 1, 3, 5, 6], 4))
print(nearest_larger_value_index([4, 1, 3, 5, 6], 3))
"""
SPECS:
TIME COMPLEXITY: O(n ^ 2)
SPACE COMPLEXITY: O(n)
[O(n ^ 2) is for preprocessing, after which it's complexity is O(1)]
"""