-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path287.py
109 lines (92 loc) · 3.09 KB
/
287.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""
Problem:
You are given a list of (website, user) pairs that represent users visiting websites.
Come up with a program that identifies the top k pairs of websites with the greatest
similarity.
For example, suppose k = 1, and the list of tuples is:
[('a', 1), ('a', 3), ('a', 5),
('b', 2), ('b', 6),
('c', 1), ('c', 2), ('c', 3), ('c', 4), ('c', 5),
('d', 4), ('d', 5), ('d', 6), ('d', 7),
('e', 1), ('e', 3), ('e', 5), ('e', 6)]
Then a reasonable similarity metric would most likely conclude that a and e are the
most similar, so your program should return [('a', 'e')].
"""
from typing import Dict, List, Set, Tuple
def get_similarity_score(
visited_map: Dict[str, Set[int]], site1: str, site2: str
) -> float:
union = visited_map[site1] | visited_map[site2]
intersection = visited_map[site1] & visited_map[site2]
return len(intersection) / len(union)
def create_visit_map(visited_websites: List[Tuple[str, int]]) -> Dict[str, Set[int]]:
visited_map = {}
for site, user in visited_websites:
if site not in visited_map:
visited_map[site] = set()
visited_map[site].add(user)
return visited_map
def get_similar_websites_helper(
visited_websites: List[Tuple[str, int]]
) -> Dict[str, Dict[str, float]]:
similarity = {}
visited_map = create_visit_map(visited_websites)
for site1 in visited_map:
for site2 in visited_map:
if site1 not in similarity:
similarity[site1] = {}
if site2 not in similarity:
similarity[site2] = {}
if site1 != site2 and site2 not in similarity[site1]:
similarity_score = get_similarity_score(visited_map, site1, site2)
similarity[site1][site2] = similarity_score
similarity[site2][site1] = similarity_score
return similarity
def get_similar_websites(
visited_websites: List[Tuple[str, int]], k: int
) -> List[Tuple[str, str]]:
similarity_map = get_similar_websites_helper(visited_websites)
# generating the similar sites array
arr = [
(site1, site2, similarity_map[site1][site2])
for site2 in similarity_map
for site1 in similarity_map
if site1 != site2
]
arr.sort(reverse=True, key=lambda x: x[2])
# generating the top k similar websites
result = []
for i in range(k):
# choosing every 2nd element as every 2 consecutive elements are the equivalent
# ("a", "b") is equivalent to ("b", "a")
site1, site2, _ = arr[2 * i]
result.append((site1, site2))
return result
if __name__ == "__main__":
visited_websites = [
("a", 1),
("a", 3),
("a", 5),
("b", 2),
("b", 6),
("c", 1),
("c", 2),
("c", 3),
("c", 4),
("c", 5),
("d", 4),
("d", 5),
("d", 6),
("d", 7),
("e", 1),
("e", 3),
("e", 5),
("e", 6),
]
print(get_similar_websites(visited_websites, 1))
print(get_similar_websites(visited_websites, 3))
"""
SPECS:
TIME COMPLEXITY: O(n ^ 2)
SPACE COMPLEXITY: O(n)
"""