-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path304.py
60 lines (46 loc) · 1.69 KB
/
304.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
Problem:
A knight is placed on a given square on an 8 x 8 chessboard. It is then moved randomly
several times, where each move is a standard knight move. If the knight jumps off the
board at any point, however, it is not allowed to jump back on.
After k moves, what is the probability that the knight remains on the board?
"""
from typing import List, Tuple
def get_moves(position: Tuple[int, int]) -> List[Tuple[int, int]]:
i, j = position
moves = [
(i + 2, j + 1),
(i + 2, j - 1),
(i - 2, j + 1),
(i - 2, j - 1),
(i + 1, j + 2),
(i + 1, j - 2),
(i - 1, j + 2),
(i - 1, j - 2),
]
return moves
def get_knight_on_board_probability_helper(position: Tuple[int, int], k: int) -> int:
i, j = position
if not (0 <= i < 8) or not (0 <= j < 8):
return 0
if k == 0:
return 1
# generating total number of valid moves from current position
moves = get_moves(position)
accumulator = 0
for pos in moves:
accumulator += get_knight_on_board_probability_helper(pos, k - 1)
return accumulator
def get_knight_on_board_probability(position: Tuple[int, int], k: int) -> float:
# P(knight remains on board) = (number of positions on board / total positions)
number_of_move_in_board = get_knight_on_board_probability_helper(position, k)
return number_of_move_in_board / pow(8, k)
if __name__ == "__main__":
print("{:.3f}".format(get_knight_on_board_probability((4, 4), 1)))
print("{:.3f}".format(get_knight_on_board_probability((4, 4), 2)))
print("{:.3f}".format(get_knight_on_board_probability((1, 1), 3)))
"""
SPECS:
TIME COMPLEXITY: O(8 ^ k)
SPACE COMPLEXITY: O(k)
"""