-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path355.py
59 lines (46 loc) · 1.78 KB
/
355.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Problem:
You are given an array X of floating-point numbers x1, x2, ... xn. These can be rounded
up or down to create a corresponding array Y of integers y1, y2, ... yn.
Write an algorithm that finds an appropriate Y array with the following properties:
The rounded sums of both arrays should be equal.
The absolute pairwise difference between elements is minimized. In other words,
|x1- y1| + |x2- y2| + ... + |xn- yn| should be as small as possible.
For example, suppose your input is [1.3, 2.3, 4.4]. In this case you cannot do better
than [1, 2, 5], which has an absolute difference of
|1.3 - 1| + |2.3 - 2| + |4.4 - 5| = 1.
"""
from typing import List, Tuple
def get_fraction_from_tuple(tup: Tuple[int, float]) -> float:
_, elem = tup
return elem - int(elem)
def round_arr(arr: List[float]) -> List[int]:
rounded_arr = [round(elem) for elem in arr]
sum_arr = int(sum(arr))
sum_rounded_arr = sum(rounded_arr)
# if the sums are equal, the rounding has been properly implemented
if sum_arr == sum_rounded_arr:
return rounded_arr
# eqalizing the sums
should_increment = sum_arr > sum_rounded_arr
num_map = sorted(
[(index, elem) for index, elem in enumerate(arr)],
key=get_fraction_from_tuple,
reverse=should_increment,
)
# incrementing and decrementing the values as per requirement (while minimizing the
# pair-wise sum)
for i in range(sum_arr - sum_rounded_arr):
index, _ = num_map[i]
rounded_arr[index] = (
rounded_arr[index] + 1 if should_increment else rounded_arr[index] - 1
)
return rounded_arr
if __name__ == "__main__":
print(round_arr([1.3, 2.3, 4.4]))
print(round_arr([1.8, 2.8, 4.4]))
"""
SPECS:
TIME COMPLEXITY: O(n x log(n))
SPACE COMPLEXITY: O(n)
"""