forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_module_init.py
447 lines (420 loc) · 19.9 KB
/
test_module_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# Owner(s): ["module: nn"]
import inspect
import torch
from unittest import mock
from unittest.mock import MagicMock, patch
from torch.testing import floating_types
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
from torch.testing._internal.common_utils import TestCase, run_tests
# Returns a database of args & kwargs that can be used to construct each module.
# Each entry is in class -> (args, kwargs) format.
# Example: torch.nn.Linear -> ([10, 5], {})
# TODO: Merge this in with the initial ModuleInfo implementation.
def build_constructor_arg_db():
return {
torch.nn.AdaptiveAvgPool1d: ((5,), {}),
torch.nn.AdaptiveAvgPool2d: ((5,), {}),
torch.nn.AdaptiveAvgPool3d: ((5,), {}),
torch.nn.AdaptiveLogSoftmaxWithLoss: ((100, 20, [5, 10, 15]), {}),
torch.nn.AdaptiveMaxPool1d: ((5,), {}),
torch.nn.AdaptiveMaxPool2d: ((5,), {}),
torch.nn.AdaptiveMaxPool3d: ((5,), {}),
torch.nn.AlphaDropout: ((), {}),
torch.nn.AvgPool1d: ((3,), {}),
torch.nn.AvgPool2d: ((3,), {}),
torch.nn.AvgPool3d: ((3,), {}),
torch.nn.BCELoss: ((), {}),
torch.nn.BCEWithLogitsLoss: ((), {}),
torch.nn.BatchNorm1d: ((5,), {}),
torch.nn.BatchNorm2d: ((5,), {}),
torch.nn.BatchNorm3d: ((5,), {}),
torch.nn.Bilinear: ((2, 3, 4), {}),
torch.nn.CELU: ((), {}),
torch.nn.CTCLoss: ((), {}),
torch.nn.ChannelShuffle: ((4,), {}),
torch.nn.ConstantPad1d: ((2, 3.5), {}),
torch.nn.ConstantPad2d: ((2, 3.5), {}),
torch.nn.ConstantPad3d: ((2, 3.5), {}),
torch.nn.Conv1d: ((3, 3, 3), {}),
torch.nn.Conv2d: ((3, 3, 3), {}),
torch.nn.Conv3d: ((3, 3, 3), {}),
torch.nn.ConvTranspose1d: ((3, 3, 3), {}),
torch.nn.ConvTranspose2d: ((3, 3, 3), {}),
torch.nn.ConvTranspose3d: ((3, 3, 3), {}),
torch.nn.CosineEmbeddingLoss: ((), {}),
torch.nn.CosineSimilarity: ((), {}),
torch.nn.CrossEntropyLoss: ((), {}),
torch.nn.CrossMapLRN2d: ((5,), {}),
torch.nn.Dropout2d: ((), {}),
torch.nn.Dropout3d: ((), {}),
torch.nn.Dropout: ((), {}),
torch.nn.ELU: ((), {}),
torch.nn.Embedding: ((10, 5), {}),
torch.nn.EmbeddingBag: ((10, 5), {}),
torch.nn.FeatureAlphaDropout: ((), {}),
torch.nn.Flatten: ((), {}),
torch.nn.Fold: ((5, 2), {}),
torch.nn.FractionalMaxPool2d: ((5, 2), {}),
torch.nn.FractionalMaxPool3d: ((5, 2), {}),
torch.nn.GELU: ((), {}),
torch.nn.GLU: ((), {}),
torch.nn.GRU: ((5, 10), {}),
torch.nn.GRUCell: ((5, 10), {}),
torch.nn.GaussianNLLLoss: ((), {}),
torch.nn.GroupNorm: ((3, 6, 1e-5, True), {}),
torch.nn.Hardshrink: ((), {}),
torch.nn.Hardsigmoid: ((), {}),
torch.nn.Hardswish: ((), {}),
torch.nn.Hardtanh: ((), {}),
torch.nn.HingeEmbeddingLoss: ((), {}),
torch.nn.HuberLoss: ((), {}),
torch.nn.Identity: ((), {}),
torch.nn.InstanceNorm1d: ((5, 1e-5, 0.1, True), {}),
torch.nn.InstanceNorm2d: ((5, 1e-5, 0.1, True), {}),
torch.nn.InstanceNorm3d: ((5, 1e-5, 0.1, True), {}),
torch.nn.KLDivLoss: ((), {}),
torch.nn.L1Loss: ((), {}),
torch.nn.LPPool1d: ((2, 3), {}),
torch.nn.LPPool2d: ((2, 3), {}),
torch.nn.LSTM: ((5, 10), {}),
torch.nn.LSTMCell: ((5, 10), {}),
torch.nn.LayerNorm: ((2,), {}),
torch.nn.LazyBatchNorm1d: ((), {}),
torch.nn.LazyBatchNorm2d: ((), {}),
torch.nn.LazyBatchNorm3d: ((), {}),
torch.nn.LazyConv1d: ((5, 2), {}),
torch.nn.LazyConv2d: ((5, 2), {}),
torch.nn.LazyConv3d: ((5, 2), {}),
torch.nn.LazyConvTranspose1d: ((5, 2), {}),
torch.nn.LazyConvTranspose2d: ((5, 2), {}),
torch.nn.LazyConvTranspose3d: ((5, 2), {}),
torch.nn.LazyInstanceNorm1d: ((), {}),
torch.nn.LazyInstanceNorm2d: ((), {}),
torch.nn.LazyInstanceNorm3d: ((), {}),
torch.nn.LazyLinear: ((5,), {}),
torch.nn.LeakyReLU: ((), {}),
torch.nn.Linear: ((10, 5), {}),
torch.nn.LocalResponseNorm: ((2,), {}),
torch.nn.LogSigmoid: ((), {}),
torch.nn.LogSoftmax: ((), {}),
torch.nn.MSELoss: ((), {}),
torch.nn.MarginRankingLoss: ((), {}),
torch.nn.MaxPool1d: ((3,), {}),
torch.nn.MaxPool2d: ((3,), {}),
torch.nn.MaxPool3d: ((3,), {}),
torch.nn.MaxUnpool1d: ((5,), {}),
torch.nn.MaxUnpool2d: ((5,), {}),
torch.nn.MaxUnpool3d: ((5,), {}),
torch.nn.Mish: ((), {}),
torch.nn.ModuleDict: ((), {}),
torch.nn.ModuleList: ((), {}),
torch.nn.MultiLabelMarginLoss: ((), {}),
torch.nn.MultiLabelSoftMarginLoss: ((), {}),
torch.nn.MultiMarginLoss: ((), {}),
torch.nn.MultiheadAttention: ((100, 2), {}),
torch.nn.NLLLoss2d: ((), {}),
torch.nn.NLLLoss: ((), {}),
torch.nn.PReLU: ((), {}),
torch.nn.PairwiseDistance: ((), {}),
torch.nn.ParameterDict: ((), {}),
torch.nn.ParameterList: ((), {}),
torch.nn.PixelShuffle: ((2,), {}),
torch.nn.PixelUnshuffle: ((2,), {}),
torch.nn.PoissonNLLLoss: ((), {}),
torch.nn.RNN: ((5, 10), {}),
torch.nn.RNNBase: (('LSTM', 5, 10), {}),
torch.nn.RNNCell: ((5, 10), {}),
torch.nn.RNNCellBase: ((5, 10, True, 2), {}),
torch.nn.RReLU: ((), {}),
torch.nn.ReLU6: ((), {}),
torch.nn.ReLU: ((), {}),
torch.nn.ReflectionPad1d: ((2,), {}),
torch.nn.ReflectionPad2d: ((2,), {}),
torch.nn.ReflectionPad3d: ((2,), {}),
torch.nn.ReplicationPad1d: ((2,), {}),
torch.nn.ReplicationPad2d: ((2,), {}),
torch.nn.ReplicationPad3d: ((2,), {}),
torch.nn.SELU: ((), {}),
torch.nn.Sequential: ((), {}),
torch.nn.SiLU: ((), {}),
torch.nn.Sigmoid: ((), {}),
torch.nn.SmoothL1Loss: ((), {}),
torch.nn.SoftMarginLoss: ((), {}),
torch.nn.Softmax2d: ((), {}),
torch.nn.Softmax: ((), {}),
torch.nn.Softmin: ((), {}),
torch.nn.Softplus: ((), {}),
torch.nn.Softshrink: ((), {}),
torch.nn.Softsign: ((), {}),
torch.nn.SyncBatchNorm: ((5,), {}),
torch.nn.Tanh: ((), {}),
torch.nn.Tanhshrink: ((), {}),
torch.nn.Threshold: ((0.1, 20), {}),
torch.nn.Transformer: ((), {}),
torch.nn.TransformerDecoder: ((torch.nn.TransformerDecoderLayer, 3), {}),
torch.nn.TransformerDecoderLayer: ((10, 2), {}),
torch.nn.TransformerEncoder: ((torch.nn.TransformerEncoderLayer, 3), {}),
torch.nn.TransformerEncoderLayer: ((10, 2), {}),
torch.nn.TripletMarginLoss: ((), {}),
torch.nn.TripletMarginWithDistanceLoss: ((), {}),
torch.nn.Unflatten: ((1, (2, 5, 5)), {}),
torch.nn.Unfold: ((3,), {}),
torch.nn.Upsample: ((), {}),
torch.nn.UpsamplingBilinear2d: ((), {}),
torch.nn.UpsamplingNearest2d: ((), {}),
torch.nn.ZeroPad2d: ((0,), {}),
torch.nn.qat.Conv2d: ((3, 3, 3), {
'qconfig': torch.ao.quantization.default_qconfig,
}),
torch.nn.qat.Conv3d: ((3, 3, 3), {
'qconfig': torch.ao.quantization.default_qconfig,
}),
torch.nn.qat.Linear: ((5, 2), {
'qconfig': torch.ao.quantization.default_qconfig,
}),
torch.nn.qat.Embedding: ((10, 12), {
'qconfig': torch.ao.quantization.float_qparams_weight_only_qconfig,
}),
torch.nn.qat.EmbeddingBag: ((10, 12), {
'qconfig': torch.ao.quantization.float_qparams_weight_only_qconfig,
}),
torch.nn.quantizable.LSTM: ((5, 6), {}),
torch.nn.quantizable.LSTMCell: ((5, 6), {}),
torch.nn.quantizable.MultiheadAttention: ((10, 2), {}),
torch.nn.quantized.BatchNorm2d: ((2,), {}),
torch.nn.quantized.BatchNorm3d: ((2,), {}),
torch.nn.quantized.Conv1d: ((3, 3, 3), {}),
torch.nn.quantized.Conv2d: ((3, 3, 3), {}),
torch.nn.quantized.Conv3d: ((3, 3, 3), {}),
torch.nn.quantized.ConvTranspose1d: ((3, 3, 3), {}),
torch.nn.quantized.ConvTranspose2d: ((3, 3, 3), {}),
torch.nn.quantized.ConvTranspose3d: ((16, 33, (3, 3, 5)), {
'stride': (2, 1, 1),
'padding': (4, 2, 2),
'output_padding': (2, 2, 2),
'dilation': (1, 1, 1),
}),
torch.nn.quantized.DeQuantize: ((), {}),
torch.nn.quantized.ELU: ((0.01, 0), {}),
torch.nn.quantized.Embedding: ((10, 3), {
'factory_kwargs': {},
}),
torch.nn.quantized.EmbeddingBag: ((10, 3), {
'factory_kwargs': {},
}),
torch.nn.quantized.GroupNorm: ((2, 3, torch.nn.Parameter(torch.tensor(2.)),
torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}),
torch.nn.quantized.Hardswish: ((0.1, 0,), {}),
torch.nn.quantized.InstanceNorm1d: ((2, torch.nn.Parameter(torch.tensor(2.)),
torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}),
torch.nn.quantized.InstanceNorm2d: ((2, torch.nn.Parameter(torch.tensor(2.)),
torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}),
torch.nn.quantized.InstanceNorm3d: ((2, torch.nn.Parameter(torch.tensor(2.)),
torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}),
torch.nn.quantized.LayerNorm: ((2, torch.nn.Parameter(torch.tensor(2.)),
torch.nn.Parameter(torch.tensor(2.)), 0.1, 0), {}),
torch.nn.quantized.LeakyReLU: ((0.01, 0), {}),
torch.nn.quantized.Linear: ((5, 2), {
'factory_kwargs': {},
}),
torch.nn.quantized.MaxPool2d: ((3,), {}),
torch.nn.quantized.Quantize: ((0.1, 0), {
'dtype': torch.int16,
'factory_kwargs': {},
}),
torch.nn.quantized.ReLU6: ((), {}),
torch.nn.quantized.Sigmoid: ((0.1, 0), {}),
torch.nn.quantized.FloatFunctional: ((), {}),
torch.nn.quantized.FXFloatFunctional: ((), {}),
torch.nn.quantized.QFunctional: ((), {}),
}
# Instantiates the given class with the given args, kwargs, optionally on a given device.
def instantiate_class(cls, args, kwargs, extra_kwargs):
return cls(*args, **kwargs) if extra_kwargs is None else cls(*args, **kwargs, **extra_kwargs)
# Returns a function that calls the real implementation of a method
# in addition to passing args to a mock object.
def mock_wrapper(method):
mock = MagicMock()
def wrapper(self, *args, **kwargs):
mock(*args, **kwargs)
return method(self, *args, **kwargs)
wrapper.mock = mock
return wrapper
# Returns a set of args / kwargs that can be used to construct the module.
def get_example_args(module_cls, constructor_arg_db, extra_kwargs=None):
assert module_cls in constructor_arg_db, \
f"No entry for {module_cls} in the constructor arg DB. Please add it to pass these tests."
args, kwargs = constructor_arg_db[module_cls]
extra_kwargs = {} if extra_kwargs is None else extra_kwargs
# Recursively instantiate args / kwargs that are class objects.
args = [instantiate_class(arg, *get_example_args(arg, constructor_arg_db), extra_kwargs=extra_kwargs)
if inspect.isclass(arg) else torch.nn.Parameter(arg.to(**extra_kwargs))
if isinstance(arg, torch.nn.Parameter) else arg for arg in args]
kwargs = {k: instantiate_class(v, *get_example_args(v, constructor_arg_db), extra_kwargs=extra_kwargs)
if inspect.isclass(v) else torch.nn.Parameter(v.to(*extra_kwargs))
if isinstance(v, torch.nn.Parameter) else v for k, v in kwargs.items()}
kwargs.update(extra_kwargs)
return args, kwargs
def generate_test_func(test_cls, module_cls, constructor_arg_db,
verify_kwargs=True, module_is_lazy=False, check_nonexistent_arg=True):
# Generate a function for testing the given module.
@dtypes(*floating_types())
def run_test(test_cls, device, dtype, module_cls=module_cls):
# Check if this module creates parameters or registers buffers.
# The mock magic here passes through to the real Parameter / register_buffer
# logic and is only used to check for calls.
args, kwargs = get_example_args(module_cls, constructor_arg_db)
# Some modules need to pass factory_kwargs so as not to conflict with existing args such as dtype.
module_needs_factory_kwargs = 'factory_kwargs' in kwargs
if module_needs_factory_kwargs:
del kwargs['factory_kwargs']
extra_kwargs = {
'factory_kwargs': {
'device': device,
'dtype': dtype,
}
}
else:
extra_kwargs = {
'device': device,
'dtype': dtype,
}
parameter_new = mock_wrapper(torch.nn.Parameter.__new__)
with patch.object(torch.nn.Parameter, '__new__', parameter_new):
register_buffer = mock_wrapper(torch.nn.Module.register_buffer)
with patch.object(torch.nn.Module, 'register_buffer', register_buffer):
m = module_cls(*args, **kwargs)
module_creates_params_or_buffers = parameter_new.mock.called or register_buffer.mock.called
# == Verify factory kwargs are supported. ==
if verify_kwargs and module_creates_params_or_buffers:
args, kwargs = get_example_args(module_cls, constructor_arg_db,
extra_kwargs=extra_kwargs)
if module_is_lazy:
# Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers.
uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__)
with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new):
uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__)
with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new):
m = module_cls(*args, **kwargs)
uninit_param_new.mock.assert_has_calls(
[mock.call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls])
uninit_buffer_new.mock.assert_has_calls(
[mock.call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls])
else:
# Check device placement and dtype for parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg applies to.
# Note that dtype verification is also skipped if the module requires factory_kwargs.
m = module_cls(*args, **kwargs)
for name, param in m.named_parameters():
test_cls.assertEqual(
str(param.device), device,
f'Parameter {name} is on {param.device.type} instead of the expected device {device}')
if param.dtype.is_floating_point and not module_needs_factory_kwargs:
test_cls.assertEqual(
param.dtype, dtype,
f'Parameter {name} is of dtype {param.dtype} instead of the expected dtype {dtype}')
for name, buffer in m.named_buffers():
test_cls.assertEqual(
str(buffer.device), device,
f'Buffer {name} is on {buffer.device.type} instead of the expected device {device}')
if buffer.dtype.is_floating_point and not module_needs_factory_kwargs:
test_cls.assertEqual(
buffer.dtype, dtype,
f'Buffer {name} is of dtype {buffer.dtype} instead of the expected dtype {dtype}')
# == Verify passing a nonexistent arg errors out. ==
if check_nonexistent_arg:
with test_cls.assertRaises(TypeError):
m = module_cls(*args, **kwargs, nonexistent_arg='foo')
return run_test
def generate_tests(test_cls, constructor_arg_db):
# test all modules underneath these namespaces...
NAMESPACES = [
torch.nn,
torch.nn.qat,
torch.nn.quantizable,
torch.nn.quantized,
]
# ...except these
MODULES_TO_SKIP = {
torch.nn.Module,
torch.nn.Container, # deprecated
torch.nn.NLLLoss2d, # deprecated
torch.nn.quantized._ConvNd, # base class in __all__ for some reason
# TODO: Remove these 2 from this list once the ASan issue is fixed.
# See https://github.com/pytorch/pytorch/issues/55396
torch.nn.quantized.Embedding,
torch.nn.quantized.EmbeddingBag,
}
# no need to support kwargs for these modules even though
# they have parameters / buffers because they are passed in
# already instantiated
MODULES_WITHOUT_KWARGS_SUPPORT = {
torch.nn.BCELoss,
torch.nn.BCEWithLogitsLoss,
torch.nn.CrossEntropyLoss,
torch.nn.FractionalMaxPool2d,
torch.nn.FractionalMaxPool3d,
torch.nn.MultiLabelSoftMarginLoss,
torch.nn.MultiMarginLoss,
torch.nn.NLLLoss,
torch.nn.TransformerDecoder,
torch.nn.TransformerEncoder,
}
# modules that supported kwargs before
MODULES_WITH_PREVIOUS_KWARGS = {
torch.nn.Identity,
}
# lazy modules don't instantiate parameters right away
LAZY_MODULES = {
torch.nn.LazyBatchNorm1d,
torch.nn.LazyBatchNorm2d,
torch.nn.LazyBatchNorm3d,
torch.nn.LazyConv1d,
torch.nn.LazyConv2d,
torch.nn.LazyConv3d,
torch.nn.LazyConvTranspose1d,
torch.nn.LazyConvTranspose2d,
torch.nn.LazyConvTranspose3d,
torch.nn.LazyConvTranspose3d,
torch.nn.LazyInstanceNorm1d,
torch.nn.LazyInstanceNorm2d,
torch.nn.LazyInstanceNorm3d,
torch.nn.LazyLinear,
}
# these modules requires FBGEMM backend to instantiate
MODULES_THAT_REQUIRE_FBGEMM = {
torch.nn.quantized.Conv1d,
torch.nn.quantized.Conv2d,
torch.nn.quantized.Conv3d,
torch.nn.quantized.ConvTranspose1d,
torch.nn.quantized.ConvTranspose2d,
torch.nn.quantized.ConvTranspose3d,
torch.nn.quantized.Linear,
}
for namespace in NAMESPACES:
# the "nn" in "torch.nn"
namespace_basename = namespace.__name__.split('.')[-1]
for module_name in namespace.modules.__all__:
# class object for this module (e.g. torch.nn.Linear)
module_cls = getattr(namespace.modules, module_name)
if module_cls in MODULES_TO_SKIP:
continue
verify_kwargs = module_cls not in MODULES_WITHOUT_KWARGS_SUPPORT
module_is_lazy = module_cls in LAZY_MODULES
check_nonexistent_arg = module_cls not in MODULES_WITH_PREVIOUS_KWARGS
# Generate a function for testing this module and setattr it onto the test class.
run_test = generate_test_func(test_cls, module_cls, constructor_arg_db,
verify_kwargs=verify_kwargs,
module_is_lazy=module_is_lazy,
check_nonexistent_arg=check_nonexistent_arg)
test_name = f'test_{namespace_basename}_{module_name}'
if module_cls in MODULES_THAT_REQUIRE_FBGEMM:
run_test = skipIfNoFBGEMM(run_test)
setattr(TestModuleInit, test_name, run_test)
class TestModuleInit(TestCase):
_ignore_not_implemented_error = False
generate_tests(TestModuleInit, build_constructor_arg_db())
instantiate_device_type_tests(TestModuleInit, globals())
if __name__ == '__main__':
run_tests()