forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_profiler.py
819 lines (728 loc) · 30.7 KB
/
test_profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# Owner(s): ["oncall: profiler"]
import collections
import gc
import io
import json
import os
import unittest
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.utils.data.datapipes as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import (
TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_ROCM, IS_WINDOWS,
TemporaryFileName, TemporaryDirectoryName)
from torch.autograd import (_record_function_with_args_enter, _record_function_with_args_exit)
from torch.autograd.profiler import profile as _profile
from torch.profiler import (
kineto_available, profile, record_function, supported_activities,
DeviceType, ProfilerAction, ProfilerActivity
)
from torch.testing._internal.common_device_type import skipCUDAVersionIn
try:
import psutil
HAS_PSUTIL = True
except ImportError:
HAS_PSUTIL = False
import pickle
@unittest.skipIf(not HAS_PSUTIL, "Requires psutil to run")
@unittest.skipIf(TEST_WITH_ASAN, "Cannot test with ASAN")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
class TestProfilerCUDA(TestCase):
@skipCUDAVersionIn([(11, 5)]) # https://github.com/pytorch/pytorch/issues/69023
def test_mem_leak(self):
"""Checks that there's no memory leak when using profiler with CUDA
"""
t = torch.rand(1, 1).cuda()
p = psutil.Process()
last_rss = collections.deque(maxlen=5)
for outer_idx in range(10):
with _profile(use_cuda=True):
for _ in range(1024):
t = torch.mm(t, t)
gc.collect()
torch.cuda.empty_cache()
last_rss.append(p.memory_info().rss)
# with CUDA events leaking the increase in memory was ~7 MB between
# profiler invocations above
is_increasing = all(
[last_rss[idx] > last_rss[idx - 1] for idx in range(1, len(last_rss))])
max_diff = -1
for idx in range(1, len(last_rss)):
max_diff = max(max_diff, last_rss[idx] - last_rss[idx - 1])
self.assertTrue(not (is_increasing and max_diff > 100 * 1024),
msg='memory usage is increasing, {}'.format(str(last_rss)))
class TestRecordFunction(TestCase):
def _record_function_with_param(self):
u = torch.randn(3, 4, 5, requires_grad=True)
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
with record_function("## TEST 1 ##", "1, 2, 3"):
rf_handle = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], "hello", u)
_record_function_with_args_exit(rf_handle)
return prof
def test_record_function(self):
prof_result = self._record_function_with_param()
found_test_1 = False
found_test_2 = False
for e in prof_result.function_events:
if "## TEST 1 ##" == e.name:
found_test_1 = True
self.assertTrue(e.input_shapes == [[]])
elif "## TEST 2 ##" == e.name:
found_test_2 = True
self.assertTrue(e.input_shapes == [[], [], [], [], [], [3, 4, 5]])
self.assertTrue(found_test_1)
self.assertTrue(found_test_2)
def test_datapipe_with_record_function(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp1 = dp.iter.IterableWrapper(range(4))
input_dp2 = dp.iter.IterableWrapper(range(4, 8))
input_dp3 = dp.iter.IterableWrapper(range(8, 12))
output_dp = input_dp1.mux(input_dp2, input_dp3)
output = list(output_dp)
has_iter = False
has_mux = False
for e in prof.function_events:
if has_iter and has_mux:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_mux and e.name == "enumerate(DataPipe)#MultiplexerIterDataPipe":
has_mux = True
self.assertTrue(has_iter)
self.assertTrue(has_mux)
def test_datapipe_with_record_function_fork(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp = dp.iter.IterableWrapper(range(10))
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
output1 = list(dp1)
has_iter = False
has_child = False
for e in prof.function_events:
if has_iter and has_child:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_child and e.name == "enumerate(DataPipe)#_ChildDataPipe":
has_child = True
self.assertTrue(has_iter)
self.assertTrue(has_child)
class TestProfiler(TestCase):
def test_source(self):
"""Checks that source code attribution works for eager, TS and autograd mode
"""
# avoid automatic inlining
prev_opt = torch._C._get_graph_executor_optimize()
torch._C._set_graph_executor_optimize(False)
@torch.jit.script
def ts_method_2(x, y):
return torch.matmul(x, y)
@torch.jit.script
def ts_method_1(x, y, z):
a = x + z
w = ts_method_2(x, y) + a
return w.sum()
class DummyModule(nn.Module):
def __init__(self):
super(DummyModule, self).__init__()
self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=False)
def forward(self, x):
return self.conv(x)
mod = DummyModule()
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
w = ts_method_1(x, y, z)
v = 2 * w
v.backward()
a = torch.randn(2, 3, 2, 2, requires_grad=True)
b = mod(a)
c = b.sum()
c.backward()
for e in p.function_events:
if "aten::add" in e.name or "AddBackward" in e.name:
self.assertTrue(any(["test_profiler" in entry for entry in e.stack]))
self.assertTrue(any([(
"test_source" in entry or
"ts_method_1" in entry or
"ts_method_2" in entry) for entry in e.stack]))
torch._C._set_graph_executor_optimize(prev_opt)
def payload(self, use_cuda=False):
x = torch.randn(10, 10)
if use_cuda:
x = x.cuda()
y = torch.randn(10, 10)
if use_cuda:
y = y.cuda()
z = torch.mm(x, y)
z = z + y
if use_cuda:
z = z.cpu()
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_kineto(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
# rerun to avoid initial start overhead
with _profile(use_cuda=use_cuda, use_kineto=True) as p:
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
found_gemm = False
found_memcpy = False
found_mm = False
for e in p.function_events:
if "aten::mm" in e.name:
found_mm = True
if "gemm" in e.name:
found_gemm = True
if "Memcpy" in e.name or "memcpy" in e.name:
found_memcpy = True
if use_cuda:
self.assertTrue(found_gemm)
self.assertTrue(found_memcpy)
else:
self.assertTrue(found_mm)
# p.export_chrome_trace("/tmp/test_trace.json")
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(not TEST_MULTIGPU, "Multiple GPUs needed")
@unittest.skipIf(TEST_WITH_ROCM, "Not supported on ROCm")
def test_kineto_multigpu(self):
with profile(
activities=[
ProfilerActivity.CPU,
ProfilerActivity.CUDA]) as prof:
for gpu_id in [0, 1]:
x = torch.randn(10, 10).cuda(gpu_id)
y = torch.randn(10, 10).cuda(gpu_id)
z = x.matmul(y)
found_gemm_0 = False
found_gemm_1 = False
found_cuda = False
for evt in prof.events():
if "gemm" in evt.name.lower() and evt.device_type == DeviceType.CUDA:
if evt.device_index == 0:
found_gemm_0 = True
elif evt.device_index == 1:
found_gemm_1 = True
if "cuda" in evt.name.lower() and evt.device_type == DeviceType.CPU:
found_cuda = True
self.assertTrue(found_gemm_0)
self.assertTrue(found_gemm_1)
self.assertTrue(found_cuda)
def test_memory_profiler(self):
def run_profiler(tensor_creation_fn):
# collecting allocs / deallocs
with _profile(profile_memory=True, record_shapes=True, use_kineto=kineto_available()) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = tensor_creation_fn()
with record_function("test_user_scope_dealloc"):
del x
return prof.key_averages(group_by_input_shape=True)
def check_metrics(stats, metric, allocs=None, deallocs=None):
stat_metrics = {}
for stat in stats:
stat_metrics[stat.key] = getattr(stat, metric)
if allocs is not None:
for alloc_fn in allocs:
self.assertTrue(alloc_fn in stat_metrics)
self.assertTrue(stat_metrics[alloc_fn] > 0)
if deallocs is not None:
for dealloc_fn in deallocs:
self.assertTrue(dealloc_fn in stat_metrics)
self.assertTrue(stat_metrics[dealloc_fn] < 0)
def create_cpu_tensor():
return torch.rand(10, 10)
def create_cuda_tensor():
return torch.rand(10, 10).cuda()
def create_mkldnn_tensor():
return torch.rand(10, 10, dtype=torch.float32).to_mkldnn()
stats = run_profiler(create_cpu_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::empty",
"aten::rand",
"test_user_scope_alloc",
],
deallocs=[
"test_user_scope_dealloc",
]
)
if kineto_available():
with TemporaryFileName(mode="w+") as fname:
with profile(profile_memory=True) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = create_cpu_tensor()
with record_function("test_user_scope_dealloc"):
del x
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if evt["name"] == "[memory]":
found_memory_events = True
assert "args" in evt
assert "Addr" in evt["args"]
assert "Device Type" in evt["args"]
assert "Device Id" in evt["args"]
assert "Bytes" in evt["args"]
assert found_memory_events
if torch.cuda.is_available():
create_cuda_tensor()
stats = run_profiler(create_cuda_tensor)
check_metrics(
stats,
"cuda_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::to",
"aten::empty_strided",
],
deallocs=[
"test_user_scope_dealloc",
]
)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty",
]
)
if torch._C.has_mkldnn:
create_mkldnn_tensor()
stats = run_profiler(create_mkldnn_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::rand",
"aten::empty",
"aten::to_mkldnn",
],
deallocs=[
"test_user_scope_dealloc",
]
)
# check top-level memory events
with _profile(profile_memory=True, use_kineto=kineto_available()) as prof:
x = torch.rand(10, 10)
del x
if torch.cuda.is_available():
y = torch.rand(10, 10).cuda()
del y
gc.collect()
stats = prof.key_averages(group_by_input_shape=True)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty"
],
deallocs=[
"[memory]"
]
)
if torch.cuda.is_available():
check_metrics(
stats,
"cuda_memory_usage",
deallocs=[
"[memory]"
]
)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_module_hierarchy(self):
class A(nn.Module):
def __init__(self):
super(A, self).__init__()
def my_new_method(self, x):
return x * 3
def forward_impl_(self, x, y):
return self.my_new_method(x) + y
def forward(self, x, y):
y = y - 2
return self.forward_impl_(x, y)
class B(nn.Module):
def __init__(self):
super(B, self).__init__()
def forward(self, x):
return x + 2
class C(nn.Module):
def __init__(self):
super(C, self).__init__()
self.A0 = A()
self.B0 = B()
def call_b(self, x):
return self.B0.forward(x)
def forward(self, x, y):
return self.A0.forward(x, y) + self.call_b(x)
model = C()
model = torch.jit.script(model)
input_a = torch.rand(128, 128)
input_b = torch.rand(128, 128)
op_to_module_hierarchy = {}
op_to_module_hierarchy["aten::sub"] = ["TOP(C)::forward.A0(A)::forward."]
op_to_module_hierarchy["aten::mul"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.SELF(A)::my_new_method."]
op_to_module_hierarchy["aten::add"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.",
"TOP(C)::forward.SELF(C)::call_b.B0(B)::forward.", "TOP(C)::forward."]
with TemporaryFileName(mode="w+") as fname:
with profile(activities=[torch.profiler.ProfilerActivity.CPU], with_modules=True,) as prof:
model(input_a, input_b)
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if "args" in evt:
op_name = evt["name"]
if "Module Hierarchy" in evt["args"]:
hierarchy = evt["args"]["Module Hierarchy"]
if op_name in op_to_module_hierarchy:
assert hierarchy in op_to_module_hierarchy[op_name]
def test_high_level_trace(self):
"""Checks that python side high level events are recorded.
"""
class RepeatedDataset(torch.utils.data.Dataset):
def __init__(self, N, D_in, D_out):
self.N = N
self.x = torch.randn(N, D_in)
self.y = torch.randn(N, D_out)
def __len__(self):
return self.N
def __getitem__(self, idx):
return self.x, self.y
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)
def forward(self, x):
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
class CustomSGD(torch.optim.SGD):
def __init__(self, *args, **kwargs):
super(CustomSGD, self).__init__(*args, **kwargs)
def train():
for _, data in enumerate(dataloader):
x, y = data[0], data[1]
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
N, D_in, H, D_out = 8, 10, 5, 2
model = TwoLayerNet(D_in, H, D_out)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
ds = RepeatedDataset(N, D_in, D_out)
dataloader = torch.utils.data.DataLoader(ds, batch_size=1)
try:
train()
except Exception:
self.assertTrue(False, "Expected no exception without profiling.")
# Create multiple instances, expect each func is hooked only one time.
# Nested wrappers(repeated patching) will make following test fail.
optimizer_duplicate = torch.optim.SGD(model.parameters(), lr=1e-4)
dataloader_duplicate = torch.utils.data.DataLoader(ds, batch_size=1)
def judge(expected_event_count, prof):
actual_event_count = {}
for e in prof.function_events:
if "#" in e.name:
key = e.name
if key in expected_event_count.keys():
actual_event_count[key] = actual_event_count.setdefault(key, 0) + 1
for key, count in expected_event_count.items():
self.assertTrue((key in actual_event_count.keys()) and (count == actual_event_count[key]))
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
# "+1" because the final iteration will enter __next__ but skip the loop body.
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#SGD.step": N,
"Optimizer.zero_grad#SGD.zero_grad": N
}
judge(expected_event_count, prof)
# Test on pickle/unpickle. Expect to work in multi-processing.
optimizer = pickle.loads(pickle.dumps(optimizer))
with _profile(use_kineto=kineto_available()) as prof:
train()
judge(expected_event_count, prof)
# Test on customized optimizer.
optimizer = CustomSGD(model.parameters(), lr=1e-4)
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#CustomSGD.step": N,
"Optimizer.zero_grad#CustomSGD.zero_grad": N
}
judge(expected_event_count, prof)
def test_flops(self):
model = torch.nn.Sequential(
nn.Conv2d(16, 33, 18),
nn.ReLU(),
nn.Linear(243, 243),
nn.ReLU(),
)
inputs = torch.randn(40, 16, 18, 260)
with _profile(record_shapes=True, with_flops=True, use_kineto=kineto_available()) as prof:
model(inputs)
profiler_output = prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10)
self.assertIn("Total MFLOPs", profiler_output)
if not (kineto_available() and torch.cuda.is_available()):
return
with profile(activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
record_shapes=True,
with_flops=True,
) as kineto_profiler:
model(inputs)
profiler_output = kineto_profiler.key_averages().table(
sort_by="self_cuda_time_total", row_limit=-1)
self.assertIn("Total MFLOPs", profiler_output)
def test_kineto_profiler_api(self):
called_num = [0]
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with profile(activities=supported_activities()):
self.payload(use_cuda=use_cuda)
def trace_handler(p):
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
# p.export_chrome_trace("/tmp/test_trace_" + str(called_num[0]) + ".json")
called_num[0] += 1
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2),
on_trace_ready=trace_handler
) as p:
for idx in range(8):
self.payload(use_cuda=use_cuda)
p.step()
self.assertEqual(called_num[0], 2)
# case without schedule
with profile(
activities=supported_activities()
) as p:
self.payload(use_cuda=use_cuda)
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
test_schedule = torch.profiler.schedule(
skip_first=2,
wait=1,
warmup=1,
active=2,
repeat=2)
test_schedule_expected_outputs = [
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
]
for step in range(len(test_schedule_expected_outputs)):
self.assertEqual(test_schedule(step), test_schedule_expected_outputs[step])
def test_export_stacks(self):
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10)
y = torch.randn(10, 10)
z = torch.mm(x, y)
z = z + y
with TemporaryFileName(mode="w+") as fname:
p.export_stacks(fname)
with io.open(fname, 'r') as f:
lines = f.readlines()
assert len(lines) > 0, "Empty stacks file"
for line in lines:
is_int = False
try:
assert int(line.split(" ")[-1]) > 0, "Invalid stacks record"
is_int = True
except ValueError:
pass
assert is_int, "Invalid stacks record"
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
def test_tensorboard_trace_handler(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
with TemporaryDirectoryName() as dname:
with profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname)
) as p:
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-4].isdigit() and int(parts[-4]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-3:], ['pt', 'trace', 'json'])
file_num += 1
self.assertEqual(file_num, 3)
# test case for gzip file format
with TemporaryDirectoryName() as dname:
p = profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname, use_gzip=True)
)
p.start()
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
p.stop()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-5].isdigit() and int(parts[-5]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-4:], ['pt', 'trace', 'json', 'gz'])
file_num += 1
self.assertEqual(file_num, 3)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_profiler_metadata(self):
t1, t2 = torch.ones(1), torch.ones(1)
with profile() as prof:
torch.add(t1, t2)
prof.add_metadata("test_key1", "test_value1")
prof.add_metadata_json("test_key2", "[1,2,3]")
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "test_key1" in trace
assert trace["test_key1"] == "test_value1"
assert "test_key2" in trace
assert trace["test_key2"] == [1, 2, 3]
def _test_profiler_tracing(self, use_kineto):
with _profile(use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1), torch.ones(1)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# read the trace and expect valid json
# if the JSON generated by export_chrome_trace is not valid, this will throw and fail the test.
with io.open(fname, 'r') as f:
json.load(f)
# test empty trace
with _profile(use_kineto=use_kineto) as prof:
pass
# saving an empty trace
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Same test but for cuda.
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
if not use_cuda:
return
device = torch.device("cuda:0")
with _profile(use_cuda=True, use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1, device=device), torch.ones(1, device=device)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Now validate the json
with io.open(fname, 'r') as f:
json.load(f)
def test_profiler_tracing(self):
self._test_profiler_tracing(False)
if kineto_available():
self._test_profiler_tracing(True)
def test_profiler_fwd_bwd_link(self):
with _profile(use_kineto=True) as prof:
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
loss.backward()
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
j = json.load(f)
events = j["traceEvents"]
ts_to_name = {}
flow_s_to_ts = {}
flow_f_to_ts = {}
for e in events:
if e["ph"] == "X":
ts_to_name[e["ts"]] = e["name"]
if "cat" in e and "name" in e and e["cat"] == "forward_backward" and e["name"] == "fwd_bwd":
if e["ph"] == "s":
flow_s_to_ts[e["id"]] = e["ts"]
elif e["ph"] == "f":
flow_f_to_ts[e["id"]] = e["ts"]
self.assertTrue(len(flow_s_to_ts) == 2)
self.assertTrue(len(flow_f_to_ts) == 2)
self.assertTrue(1 in flow_s_to_ts.keys())
self.assertTrue(1 in flow_f_to_ts.keys())
self.assertTrue(2 in flow_s_to_ts.keys())
self.assertTrue(2 in flow_f_to_ts.keys())
s_ts_1 = flow_s_to_ts[1]
f_ts_1 = flow_f_to_ts[1]
s_ts_2 = flow_s_to_ts[2]
f_ts_2 = flow_f_to_ts[2]
self.assertTrue(all([ts in ts_to_name.keys() for ts in [s_ts_1, f_ts_1, s_ts_2, f_ts_2]]))
self.assertTrue(ts_to_name[s_ts_1] == "aten::binary_cross_entropy_with_logits")
self.assertTrue(ts_to_name[s_ts_2] == "aten::add")
if __name__ == '__main__':
run_tests()