This repository contains the code accompanying the paper Linear Transformers Are Secretly Fast Weight Programmers which is published at ICML'21. It also contains the logs of all synthetic experiments.
$ cat req.txt
jupyter==1.0.0
pandas==1.0.1
seaborn==0.10.0
torch==1.6.0
matplotlib==3.1.3
numpy==1.17.2
pip3 install -r req.txt
Logs are provided in the synthetic/logs
folder.
The files in that folder are a result of running the following commands:
Setting 1 (capacity):
python3 main.py --begin=20 --end=600 --step=20 --attn_name=softmax --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=linear --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=2 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=dpfp --attn_arg=3 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=64 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=128 --update_rule=sum
python3 main.py --begin=20 --end=600 --step=20 --attn_name=favor --attn_arg=512 --update_rule=sum
Setting 2 (update rule):
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=sum --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=tanh --update_rule=fwm --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=1 --update_rule=fwm --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=dpfp --attn_arg=2 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=linear --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=favor --attn_arg=64 --update_rule=ours --replace
python3 main.py --begin=20 --end=200 --step=20 --attn_name=favor --attn_arg=128 --update_rule=ours --replace
Generate figures from the logs using the following notebooks:
synthetic/setting1_generate_figure.ipynb
synthetic/setting2_generate_figure.ipynb
The toolkit and scripts for language modeling experiments can be found at IDSIA/lmtool-fwms.
For machine translation experiments, we ported the different attention functions implemented in the language modeling toolkit to the multi-head attention implementation in FAIRSEQ.
@inproceedings{schlag2021linear,
title={Linear Transformers Are Secretly Fast Weight Programmers},
author={Imanol Schlag and Kazuki Irie and J\"urgen Schmidhuber},
booktitle={Proc. Int. Conf. on Machine Learning (ICML)},
address = {Virtual only},
month = jul,
year={2021}
}