forked from rampasek/GraphGPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha_results_analysis.py
437 lines (390 loc) · 15.7 KB
/
a_results_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import seml
import numpy as np
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from pathlib import Path
import pandas as pd
import argparse
import shutil
from collections import defaultdict
datasets = {
"CLUSTER_as": {"format":"PyG-GNNBenchmarkDataset", "name": "CLUSTER"},
"CLUSTER_cs": {"format":"PyG-GNNBenchmarkDataset", "name": "CLUSTER"},
"CoraML-RUT": {"format": "PyG-RobustnessUnitTest", "name": "cora_ml"},
"Citeseer-RUT": {"format": "PyG-RobustnessUnitTest", "name": "citeseer"},
"UPFD_gos_bert": {"format": "PyG-UPFD", "name": "gossipcop-bert"},
"UPFD_pol_bert": {"format": "PyG-UPFD", "name": "politifact-bert"},
"reddit_threads": {"format": "PyG-TUDataset", "name": "reddit_threads"},
}
models = {
"Graphormer": {"type": set(["Graphormer"]), "gnn_layer_type": None},
"SAN": {"type": set(["SANTransformer", "WeightedSANTransformer"]), "gnn_layer_type": None},
"GRIT": {"type": set(["GritTransformer"]), "gnn_layer_type": None},
"GCN": {"type": set(["gnn"]), "gnn_layer_type": set(["gcnconvweighted", "gcnconv"])},
"GAT": {"type": set(["gnn"]), "gnn_layer_type": set(["gatconvweighted", "gatconv"])},
"GATv2": {"type": set(["gnn"]), "gnn_layer_type": set(["gatv2convweighted", "gatv2conv"])},
"GPS": {"type": set(["GPSModel"]), "gnn_layer_type": None},
"Polynormer": {"type": set(["WeightedPolynormer"]), "gnn_layer_type": None},
}
attack_cols_graph = {
"Average attack success rate": {
"adaptive": "avg_attack_success_rate", "random": "avg_attack_success_rate_random",
},
"Average accuracy": {
"clean": "avg_correct_clean", "adaptive": "avg_correct_pert", "random": "avg_correct_pert_random",
},
"Average margin": {
"clean": "avg_margin_clean", "adaptive": "avg_margin_pert", "random": "avg_margin_pert_random",
},
}
attack_cols_node = {
"Average attack success rate": {
"adaptive": "avg_attack_success_rate", "random": "avg_attack_success_rate_random",
},
"Average accuracy": {
"clean": "avg_correct_acc_clean", "adaptive": "avg_correct_acc_pert", "random": "avg_correct_acc_pert_random",
},
"Average mean margin": {
"clean": "avg_margin_mean_clean", "adaptive": "avg_margin_mean_pert", "random": "avg_margin_mean_pert_random",
},
}
budget_measures = {
"budget": {
"keys": {"adaptive": "budget", "random": "budget"},
"label": r"Budget (% edge modifications allowed)",
"mul": 100,
},
"budget_used": {
"keys": {"adaptive": "bu", "random": "bur"},
"label": r"Average edges modified (%)",
"mul": 100,
},
"num_modifications": {
"keys": {"adaptive": "m", "random": "mr"},
"label": r"Average num. edges modified",
"mul": 1,
},
}
def clean_path(results_path: str, names: list[str]) -> tuple[dict, dict, dict]:
results_path = Path(results_path)
if results_path.exists():
shutil.rmtree(results_path)
results_paths, general_info_files, seed_dirs = {}, {}, {}
for name in names:
results_path_num = results_path / name
results_path_num.mkdir(parents=True)
results_paths[name] = results_path_num
general_info_file = results_path_num / "runs_infos.txt"
general_info_files[name] = general_info_file
seed_dir = results_path_num / "results"
seed_dir.mkdir()
seed_dirs[name] = seed_dir
return results_paths, general_info_files, seed_dirs
def write_info_file(info_file, run_ids, num_params, extras, seeds_graphgym, seeds_seml, run_dirs, budgets):
with open(info_file, "w") as f:
f.write("Attack run infos:")
for i, run_id in enumerate(run_ids):
f.write(f"\nrun: {run_id}")
f.write(f"\n\te_budget: {budgets[i]}")
f.write(f"\n\tnum_params: {num_params[i]}")
for k, v in extras.items():
f.write(f"\n\t{k}: {v[i]}")
f.write(f"\n\tgraphgym.seed: {seeds_graphgym[i]}")
f.write(f"\n\tseed(seml): {seeds_seml[i]}")
f.write(f"\n\trun_dir: {run_dirs[i]}")
f.write("\n")
def write_results(
info_file,
seed_dir,
results,
run_ids,
extras,
seeds_graphgym,
seeds_seml,
run_dirs,
num_params,
budgets,
attack_cols,
):
write_info_file(info_file, run_ids, num_params, extras, seeds_graphgym, seeds_seml, run_dirs, budgets)
cols = []
for col_group in attack_cols.values():
cols.extend(list(col_group.values()))
seed_results = {}
for i, seed in enumerate(seeds_graphgym):
if seed not in seed_results:
seed_results[seed] = defaultdict(list)
seed_results[seed]["run_ids"].append(run_ids[i])
for budget_measure, budget in budgets[i].items():
seed_results[seed][budget_measure].append(budget)
for col in cols:
seed_results[seed][col].append(results[i]["result"]["attack"]["avg"][col])
seed_dfs = {}
df_dir = seed_dir / "all"
df_dir.mkdir()
for seed, results in seed_results.items():
df = pd.DataFrame(results)
seed_dfs[seed] = df
df.to_csv(df_dir / f"seed_{seed}.csv")
# aggregate seeds, mean and error std
df_agg = pd.concat(list(seed_dfs.values()), ignore_index=True)
df_agg = df_agg.drop("run_ids", axis=1)
df_agg_mean = df_agg.groupby("budget", as_index=False).mean()
df_agg_std = df_agg.groupby("budget", as_index=False).std()
df_agg_mean.to_csv(seed_dir / "agg_mean.csv")
df_agg_std.to_csv(seed_dir / "agg_std.csv")
return seed_dfs, df_agg_mean, df_agg_std
def save_plots(
model,
dataset,
seed_dfs,
results_path,
attack_cols,
df_agg_mean,
df_agg_std,
num_budgets: None | int,
y_range,
):
plots_dir = results_path / "plots"
seed_plot_dir = plots_dir / "seeds"
seed_plot_dir.mkdir(parents=True)
for seed, df in seed_dfs.items():
cur_plot_dir = seed_plot_dir / f"seed_{seed}"
cur_plot_dir.mkdir()
for title, col_group in attack_cols.items():
for budget_measure, budget_dict in budget_measures.items():
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(7, 4))
ax.set_title(f"{model} - {dataset.replace('_', ' ')}")
if "clean" in col_group:
c = col_group["clean"]
zb_val = df[c][0]
else:
zb_val = 0.0
for label, col in col_group.items():
if label == "clean":
continue # don't plot the clean (is equal to first step anyway)
x = np.concatenate(
(np.array([0.0]), np.array(df[budget_dict["keys"][label]]))
) * budget_dict["mul"]
y = np.concatenate((np.array([zb_val]), np.array(df[col])))
if num_budgets:
x = x[:num_budgets]
y = y[:num_budgets]
ax.plot(x, y, label=label)
ax.set_xlabel(budget_dict["label"])
ax.set_ylabel(title)
ax.set_ylim(bottom=y_range[0], top=y_range[1])
ax.legend()
fig.savefig(cur_plot_dir / f"{dataset}_{model}_{title.replace(' ', '_')}_{budget_measure}.png")
ax.clear()
plt.close(fig)
agg_plot_dir = plots_dir / "agg"
agg_plot_dir.mkdir(parents=True)
# plot aggregate
for title, col_group in attack_cols.items():
for budget_measure, budget_dict in budget_measures.items():
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(7, 4))
ax.set_title(f"{model} - {dataset.replace('_', ' ')}")
if "clean" in col_group:
c = col_group["clean"]
zb_val = df[c][0]
else:
zb_val = 0.0
for label, col in col_group.items():
if label == "clean":
continue # don't plot the clean (is equal to first step anyway)
x = np.concatenate(
(np.array([0.0]), np.array(df_agg_mean[budget_dict["keys"][label]]))
) * budget_dict["mul"]
y = np.concatenate((np.array([zb_val]), np.array(df_agg_mean[col])))
std = np.concatenate((np.array([0.0]), np.array(df_agg_std[col])))
if num_budgets:
x = x[:num_budgets]
y = y[:num_budgets]
std = std[:num_budgets]
ax.plot(x, y, label=label)
ax.fill_between(x, y-std, y+std, alpha=0.2)
ax.set_xlabel(budget_dict["label"])
ax.set_ylabel(title)
ax.set_ylim(bottom=y_range[0], top=y_range[1])
ax.legend()
fig.savefig(agg_plot_dir / f"{dataset}_{model}_{title.replace(' ', '_')}_{budget_measure}.png")
ax.clear()
plt.close(fig)
def get_collection_results(collection, filter_dict):
extra_fields = [
'slurm.array_id', 'slurm.experiments_per_job', 'slurm.task_id', 'stats.real_time',
'stats.pytorch.gpu_max_memory_bytes', 'stats.self.max_memory_bytes',
]
results = seml.get_results(
collection,
['config', 'result'] + extra_fields,
filter_dict=filter_dict,
)
run_ids = [result["_id"] for result in results]
extras = dict()
for key in extra_fields:
values = []
keys_list = key.split(".")
for r in results:
for key_l in keys_list[:-1]:
r = r.get(key_l, {})
key_last = keys_list[-1]
v = r.get(key_last, None)
if v is not None:
if key_last.endswith("bytes"):
v = f"{v * 1e-9:.1f} GB"
if key_last.endswith("time"):
v = f"{v / 3600:.2f} hours"
values.append(v)
extras[key] = values
seeds_graphgym = [result["config"]["graphgym"]["seed"] for result in results]
seeds_seml = [result["config"]["seed"] for result in results]
run_dirs = [result["result"].get("run_dir") for result in results]
num_params = [result["result"].get("num_params") for result in results]
budgets_allowed = [result["config"]["graphgym"]["attack"]["e_budget"] for result in results]
avg_num_edges_modified = [r["result"]["attack"]["avg"]["avg_budget_used"] for r in results]
avg_num_edges_modified_random = [r["result"]["attack"]["avg"]["avg_budget_used_random"] for r in results]
avg_num_edges_clean = [r["result"]["attack"]["avg"]["avg_num_edges_clean"] for r in results]
avg_budget_used = [m / c for m, c in zip(avg_num_edges_modified, avg_num_edges_clean)]
avg_budget_used_random = [m / c for m, c in zip(avg_num_edges_modified_random, avg_num_edges_clean)]
budgets = [
{"budget": b, "bu": bu, "bur": bur, "m": m, "mr": mr} for b, bu, bur, m, mr in zip(
budgets_allowed,
avg_budget_used,
avg_budget_used_random,
avg_num_edges_modified,
avg_num_edges_modified_random,
)
]
return results, run_ids, extras, seeds_graphgym, seeds_seml, run_dirs, num_params, budgets
def check_results(results, dataset, model):
for res in results:
df = res["config"]["graphgym"]["dataset"]["format"]
dfg = datasets[dataset]["format"]
dn = res["config"]["graphgym"]["dataset"]["name"]
dng = datasets[dataset]["name"]
assert df == dfg, (f"Dataset format was given to be `{dfg}`, but encountered `{df}`.")
assert dn == dng, (f"Dataset name was given to be `{dng}`, but encountered `{dn}`.")
if dataset.startswith("CLUSTER"):
constrained_attack = dataset.endswith("cs")
if constrained_attack:
assert res["config"]["graphgym"]["attack"]["cluster_sampling"]
else:
assert not res["config"]["graphgym"]["attack"]["cluster_sampling"]
mt = res["config"]["graphgym"]["model"]["type"]
mtg = models[model]["type"]
assert mt in mtg, (f"Model was given to be in {mtg}, but encountered `{mt}`.")
mlg = models[model]["gnn_layer_type"]
if mlg is not None:
ml = res["config"]["graphgym"]["gnn"]["layer_type"]
assert ml in mlg, (f"Model layer was given to be in {mlg}, but encountered `{ml}`.")
pred_level = results[0]["config"]["graphgym"]["attack"]["prediction_level"]
for r in results:
assert r["config"]["graphgym"]["attack"]["prediction_level"] == pred_level, (
"Why are there different prediction levels in same collection?"
)
if pred_level == "graph":
attack_cols = attack_cols_graph
elif pred_level == "node":
attack_cols = attack_cols_node
else:
raise ValueError(f"Unknown prediction level: `{pred_level}`")
return attack_cols
def main(
collection: str,
results_path: str,
filter_dict,
dataset: str,
model: str,
num_budgets: None | int,
y_range,
):
(
results,
run_ids,
extras,
seeds_graphgym,
seeds_seml,
run_dirs,
num_params,
budgets,
) = get_collection_results(collection, filter_dict)
attack_cols = check_results(results, dataset, model)
# separate by the pretrained model
per_pretrained = defaultdict(lambda: defaultdict(list))
for i, r in enumerate(results):
pretrained = r["config"]["graphgym"]["pretrained"]["dir"]
name = pretrained.split("/")[-1]
per_pretrained[name]["results"].append(r)
for n, v in zip(
[
"run_ids",
"seeds_graphgym",
"seeds_seml",
"run_dirs",
"num_params",
"budgets",
],
[
run_ids[i],
seeds_graphgym[i],
seeds_seml[i],
run_dirs[i],
num_params[i],
budgets[i],
]
):
per_pretrained[name][n].append(v)
# create the paths for each different model, dict
results_paths, info_files, seed_dirs = clean_path(results_path, list(per_pretrained))
for name, d in per_pretrained.items():
# write results into file
seed_dataframes, df_agg_mean, df_agg_std = write_results(
info_files[name],
seed_dirs[name],
d["results"],
d["run_ids"],
extras,
d["seeds_graphgym"],
d["seeds_seml"],
d["run_dirs"],
d["num_params"],
d["budgets"],
attack_cols
)
# plots
save_plots(
model,
dataset,
seed_dataframes,
results_paths[name],
attack_cols,
df_agg_mean,
df_agg_std,
num_budgets,
y_range,
)
parser = argparse.ArgumentParser(description='Processes the results of attack.')
parser.add_argument("-c", "--collection")
parser.add_argument("-d", "--dataset")
parser.add_argument("-m", "--model")
parser.add_argument("-n", "--num-budgets", default=None, type=int)
parser.add_argument("--y-max", default=None, type=float)
parser.add_argument("--y-min", default=None, type=float)
if __name__ == "__main__":
args = parser.parse_args()
assert args.dataset in datasets
results_path = f"results_a/{args.dataset}/{args.model}/{args.collection}"
# not implemented for argparse... but can manually change here
filter_dict = None # {"config.graphgym.attack.cluster_sampling": True}
main(
collection=args.collection,
results_path=results_path,
filter_dict=filter_dict,
dataset=args.dataset,
model=args.model,
num_budgets=args.num_budgets,
y_range=(args.y_min, args.y_max),
)