forked from ewan-xu/pyaec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·140 lines (109 loc) · 4.42 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2020 ewan xu<ewan_xu@outlook.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import numpy as np
import librosa
import soundfile as sf
import pyroomacoustics as pra
from time_domain_adaptive_filters.lms import lms
from time_domain_adaptive_filters.nlms import nlms
from time_domain_adaptive_filters.blms import blms
from time_domain_adaptive_filters.bnlms import bnlms
from time_domain_adaptive_filters.rls import rls
from time_domain_adaptive_filters.apa import apa
from time_domain_adaptive_filters.kalman import kalman
from frequency_domain_adaptive_filters.pfdaf import pfdaf
from frequency_domain_adaptive_filters.fdaf import fdaf
from frequency_domain_adaptive_filters.fdkf import fdkf
from frequency_domain_adaptive_filters.pfdkf import pfdkf
from nonlinear_adaptive_filters.volterra import svf
from nonlinear_adaptive_filters.flaf import flaf
from nonlinear_adaptive_filters.aeflaf import aeflaf
from nonlinear_adaptive_filters.sflaf import sflaf
from nonlinear_adaptive_filters.cflaf import cflaf
def main():
x, sr = librosa.load('samples/female.wav',sr=8000)
d, sr = librosa.load('samples/male.wav',sr=8000)
rt60_tgt = 0.08
room_dim = [2, 2, 2]
e_absorption, max_order = pra.inverse_sabine(rt60_tgt, room_dim)
room = pra.ShoeBox(room_dim, fs=sr, materials=pra.Material(e_absorption), max_order=max_order)
room.add_source([1.5, 1.5, 1.5])
room.add_microphone([0.1, 0.5, 0.1])
room.compute_rir()
rir = room.rir[0][0]
rir = rir[np.argmax(rir):]
y = np.convolve(x,rir)
scale = np.sqrt(np.mean(x**2)) / np.sqrt(np.mean(y**2))
y = y*scale
L = max(len(y),len(d))
y = np.pad(y,[0,L-len(y)])
d = np.pad(d,[L-len(d),0])
x = np.pad(x,[0,L-len(x)])
d = d + y
sf.write('samples/x.wav', x, sr, subtype='PCM_16')
sf.write('samples/d.wav', d, sr, subtype='PCM_16')
print("processing time domain adaptive filters.")
e = lms(x, d, N=256, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/lms.wav', e, sr, subtype='PCM_16')
e = blms(x, d, N=256, L=4, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/blms.wav', e, sr, subtype='PCM_16')
e = nlms(x, d, N=256, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/nlms.wav', e, sr, subtype='PCM_16')
e = bnlms(x, d, N=256, L=4, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/bnlms.wav', e, sr, subtype='PCM_16')
e = rls(x, d, N=256)
e = np.clip(e,-1,1)
sf.write('samples/rls.wav', e, sr, subtype='PCM_16')
e = apa(x, d, N=256, P=5, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/apa.wav', e, sr, subtype='PCM_16')
e = kalman(x, d, N=256)
e = np.clip(e,-1,1)
sf.write('samples/kalman.wav', e, sr, subtype='PCM_16')
print("processing nonlinear adaptive filters.")
e = svf(x, d, M=256, mu1=0.1, mu2=0.1)
e = np.clip(e,-1,1)
sf.write('samples/volterra.wav', e, sr, subtype='PCM_16')
e = flaf(x, d, M=256, P=5, mu=0.2)
e = np.clip(e,-1,1)
sf.write('samples/flaf.wav', e, sr, subtype='PCM_16')
e = aeflaf(x, d, M=256, P=5, mu=0.05, mu_a=0.1)
e = np.clip(e,-1,1)
sf.write('samples/aeflaf.wav', e, sr, subtype='PCM_16')
e = sflaf(x, d, M=256, P=5, mu_L=0.2, mu_FL=0.5)
e = np.clip(e,-1,1)
sf.write('samples/sflaf.wav', e, sr, subtype='PCM_16')
e = cflaf(x, d, M=256, P=5, mu_L=0.2, mu_FL=0.5, mu_a=0.5)
e = np.clip(e,-1,1)
sf.write('samples/cflaf.wav', e, sr, subtype='PCM_16')
print("processing frequency domain adaptive filters.")
e = fdaf(x, d, M=256, mu=0.1)
e = np.clip(e,-1,1)
sf.write('samples/fdaf.wav', e, sr, subtype='PCM_16')
e = fdkf(x, d, M=256)
e = np.clip(e,-1,1)
sf.write('samples/fdkf.wav', e, sr, subtype='PCM_16')
e = pfdaf(x, d, N=8, M=64, mu=0.1, partial_constrain=True)
e = np.clip(e,-1,1)
sf.write('samples/pfdaf.wav', e, sr, subtype='PCM_16')
e = pfdkf(x, d, N=8, M=64, partial_constrain=True)
e = np.clip(e,-1,1)
sf.write('samples/pfdkf.wav', e, sr, subtype='PCM_16')
if __name__ == '__main__':
main()