-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecalculate_score_for_old_analysis.py
507 lines (443 loc) · 18.4 KB
/
recalculate_score_for_old_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from datetime import date
import utils
import time
import query
import pandas as pd
import ast
import re
AVAILABILITY_METRICS = 4
LICENSING_METRICS = 2
INTERLINKING_METRICS = 4
SECURITY_METRICS = 2
PERFORMANCE_METRICS = 2
ACCURACY_METRICS = 5
CONSISTENCY_METRICS = 5
CONCISENESS_METRICS = 2
VERIFIABILITY_METRICS = 6
REPUTATION_METRICS = 1
BELIEVABILITY_METRICS = 1
CURRENCY_METRICS = 2
VOLATILITY_METRICS = 1
COMPLETENESS_METRICS = 1
AMOUNT_METRICS = 3
REP_CONS_METRICS = 2
REP_CONC_METRICS = 2
UNDERSTANDABILITY_METRICS = 4
INTERPRETABILITY_METRICS = 2
VERSATILITY_METRICS = 3
DIMENSION_NUMER = 20
class RecalculateScore:
def __init__(self, csv_file_path, dimensions_number):
self.kgs_quality_data = pd.read_csv(csv_file_path)
self.dimensionNumber = dimensions_number
self.availabilityScoreValue = 0
self.licensingScoreValue = 0
self.interlinkingScoreValue = 0
self.performanceScoreValue = 0
self.accuracyScoreValue = 0
self.consistencyScoreValue = 0
self.concisenessScoreValue = 0
self.verifiabilityScoreValue = 0
self.reputationScoreValue = 0
self.believabilityScoreValue = 0
self.currencyScoreValue = 0
self.volatilityScoreValue = 0
self.completenessScoreValue = 0
self.amountScoreValue = 0
self.repConsScoreValue = 0
self.repConcScoreValue = 0
self.understScoreValue = 0
self.interpretabilityScoreValue = 0
self.versatilityScoreValue = 0
self.securityScoreValue = 0
self.totalScore = 0
self.normalizedScore = 0
self.labelValue = 0
self.misplacedValue = 0
self.undefValue = 0
self.uriValue = 0
self.rdfValue = 0
self.blankValue = 0
self.vocabsValue = 0
self.tpValue = 0
self.latencyValue = 0
def availabilityScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
if row['Sparql endpoint'] == 'Available':
url = 1
else:
url = 0
if row['Availability of RDF dump (metadata)'] in [1,'1','True',True] or row['Availability of RDF dump (query)'] in ['True', True,1,'1']:
dump = 1
else:
dump = 0
if row['Inactive links'] in [True,'True']:
inactive = 0
else:
inactive = 1
try:
defValue = float(row['URIs Deferenceability'])
except:
defValue = 0
avaliability_score = ((url + dump + inactive + defValue) * weight) / AVAILABILITY_METRICS
self.kgs_quality_data.loc[index,'Availability score'] = avaliability_score
def licensingScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
if row['License machine redeable (metadata)'] not in ['false',False,'False','License not specified - notspecified -']:
mr = 1
elif row['License machine redeable (query)'] not in ['-','absent',False,'False']:
mr = 1
else:
mr = 0
if row['License human redeable'] not in ['-','False',False]:
hrV = 1
else:
hrV = 0
licensing_score = ((mr+hrV) * weight ) / LICENSING_METRICS
self.kgs_quality_data.loc[index,'Licensing score'] = licensing_score
def interlinkingScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
try:
sameAs = int(row['Number of samAs chains'])
triples = int(row['Number of triples (query)'])
if triples > 0 and triples >= sameAs:
sameAsV = sameAs/triples
else:
sameAsV = 0
except (ValueError,TypeError):
sameAsV = 0
# try:
# skosMapping = int(row['SKOS mapping properties'])
# triples = int(row['Number of triples (query)'])
# if triples > 0 and triples >= skosMapping:
# skosMappingV = skosMapping / triples
# else:
# skosMappingV = 0
# except (ValueError,TypeError):
# skosMappingV = 0
try:
clustering = float(row['Clustering coefficient'])
except (ValueError, TypeError):
clustering = 0
try:
centrality = float(row['Centrality'])
except (ValueError, TypeError):
centrality = 0
try:
if(int(row['Number of triples (query)']) > float(row['Interlinking completeness'])):
exLinks = float(row['Interlinking completeness'])
else:
exLinks = 0
except (ValueError, TypeError):
exLinks = 0
interlinking_score = ((sameAsV + clustering + centrality + exLinks) * weight) / INTERLINKING_METRICS
self.kgs_quality_data.loc[index,'Interlinking score'] = interlinking_score
def securityScore(self,weigth):
for index, row in self.kgs_quality_data.iterrows():
https = row['Use HTTPS']
if https in ['True',True]:
secure = 1
else:
secure = 0
auth = row['Requires authentication']
if auth in [True,'True']:
authV = 0
else:
authV = 1
security_score = ((secure + authV) * weigth) / SECURITY_METRICS
self.kgs_quality_data.loc[index,'Security score'] = security_score
def performanceScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
count = 0
start_time = time.time()
if row['Sparql endpoint'] == 'Available':
while (time.time() - start_time) < 1:
try:
query.TPQuery(row['SPARQL endpoint URL'],count)
count = count +1
except:
tp = 0.0
if count >= 5:
tp = 1.0
else:
tp = count / 200
latency = []
try:
for i in range(10):
query.checkEndPoint(row['SPARQL endpoint URL'])
start = time.time()
latencyValue = (time.time() - start)
latency.append(latencyValue)
if latency[0] < 1:
latencyV = 1.0
else:
sumLatency = sum(latencyValue)
meanLatency = sumLatency/len(latencyValue)
latencyV = 1000 / meanLatency
except:
latencyV = 0.0
self.tpValue = tp
self.latencyValue = latencyV
performance_score = ((tp + latencyV) * weight) / PERFORMANCE_METRICS
else:
performance_score = 0
performance_score = ((tp + latencyV) * weight) / PERFORMANCE_METRICS
self.kgs_quality_data.loc[index,'Performance score'] = performance_score
def accuracyScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
try:
voidLabel = float(row['Triples with empty annotation problem'].replace(',','.'))
except ValueError:
voidLabel = 0
try:
whitespace = float(row['Triples with white space in annotation(at the beginning or at the end)'].replace(',','.'))
except ValueError:
whitespace = 0
try:
malformedDT = float(row['Triples with malformed data type literals problem'].replace(',','.'))
except ValueError:
malformedDT = 0
try:
FPValue = float(row['Functional properties with inconsistent values'].replace(',','.'))
except ValueError:
FPValue = 0
try:
IFPValue = float(row['Invalid usage of inverse-functional properties'].replace(',','.'))
except ValueError:
IFPValue = 0
accuracy_score = ((voidLabel + whitespace + malformedDT + FPValue + IFPValue) * weight) / ACCURACY_METRICS
self.kgs_quality_data.loc[index,'Accuracy score'] = accuracy_score
def concisenessScore(self, weight):
for index, row in self.kgs_quality_data.iterrows():
try:
intC = row['Intensional conciseness']
intC = intC.split(' ',1)
intC = float(intC[0])
except ValueError:
intC = 0
try:
exC = row['Extensional conciseness']
exC = exC.split(' ',1)
exC = float(exC[0])
except ValueError:
exC = 0
conciseness_score = ((intC + exC) * weight) / CONCISENESS_METRICS
self.kgs_quality_data.loc[index,'Conciseness score'] = conciseness_score
def verifiabilityScore(self, weight):
for index, row in self.kgs_quality_data.iterrows():
try:
vocabs = ast.literal_eval(row['Vocabularies'])
if isinstance(vocabs, list):
if len(vocabs) > 0:
vocabsV = 1
else:
vocabsV = 0
else:
vocabsV = 0
except:
vocabsV = 0
try:
authorsM = row['Author (metadata)']
if authorsM not in ['False',False]:
authorV = 1
else:
authorV = 0
except:
try:
authorsQ = ast.literal_eval(row['Author (query)'])
if isinstance(authorsQ,list):
if len(authorsQ) > 0:
authorV = 1
else:
authorV = 0
else:
authorV = 0
except:
authorV = 0
try:
publishers = ast.literal_eval(row['Publisher'])
if isinstance(publishers,list):
if len(publishers) > 0:
pubV = 1
else:
pubV = 0
else:
pubV = 0
except:
pubV = 0
try:
contribs = ast.literal_eval(row['Contributor'])
if isinstance(contribs,list):
if len(contribs) > 0:
contribsV = 1
else:
contribsV = 0
else:
contribsV = 0
except:
contribsV = 0
sign = row['Signed']
if sign in ['True',True]:
signV = 1
else:
signV = 0
sources = row['Sources']
srcV = 0
web_pattern = r"Web:(\S+)"
name_pattern = r"Name:([\w\s]+)"
email_pattern = r"Email:([\w\.-]+@[\w\.-]+)"
web_match = re.search(web_pattern, sources)
name_match = re.search(name_pattern, sources)
email_match = re.search(email_pattern, sources)
web = web_match.group(1) if web_match else None
name = name_match.group(1) if name_match else None
email = email_match.group(1) if email_match else None
if web != 'absent':
srcV = srcV + 0.33
if name != 'absent Email' and name != 'absent':
srcV = srcV + 0.33
if email != 'absent' and email is not None:
srcV = srcV + 0.33
verifiability_score = ((vocabsV + authorV + pubV + contribsV + srcV + signV) * weight) / VERIFIABILITY_METRICS
self.kgs_quality_data.loc[index,'Verifiability score'] = verifiability_score
def reputationScore(self, weight):
for index, row in self.kgs_quality_data.iterrows():
try:
pr = row['PageRank']
pr = pr.replace(',','.')
pr = float(pr)
prV = pr / 10.00
except:
prV = 0
reputation_score = (prV * weight) / REPUTATION_METRICS
self.kgs_quality_data.loc[index,'Reputation score'] = reputation_score
def believabilityScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
trustV = row['Trust value'].replace(',','.')
trustV = float(trustV)
believability_score = (trustV * weight) / BELIEVABILITY_METRICS
self.kgs_quality_data.loc[index,'Believability score'] = believability_score
def currencyScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
age_of_data = row['Age of data']
if isinstance(age_of_data,date) or (isinstance(age_of_data,str) and age_of_data != '-') or isinstance(age_of_data,int):
cV = 1
else:
cV = 0
modification_date = row['Modification date']
if isinstance(modification_date,date) or (isinstance(modification_date,str)and modification_date != '-'):
mV = 1
else:
mV = 0
currency_score = ((cV + mV) * weight) / CURRENCY_METRICS
self.kgs_quality_data.loc[index,'Currency score'] = currency_score
def volatilityScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
try:
frequency = ast.literal_eval(row['Dataset update frequency'])
if isinstance(frequency,list):
if len(frequency) > 0:
freqV = 1
else:
freqV = 0
elif isinstance(frequency,str) and frequency in ['http:','https:']:
freqV = 1
else:
freqV = 0
except:
freqV = 0
volatility_score = (freqV * weight) / VOLATILITY_METRICS
self.kgs_quality_data.loc[index,'Volatility score'] = volatility_score
def completenessScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
try:
if(int(row['Number of triples (query)']) > float(row['Interlinking completeness'])):
interC = float(row['Interlinking completeness'])
else:
interC = 0
except:
interC = 0
completeness_score = (interC * weight) / COMPLETENESS_METRICS
self.kgs_quality_data.loc[index,'Completeness score'] = completeness_score
def amountScore(self,weigth):
for index, row in self.kgs_quality_data.iterrows():
try:
numT = int(row['Number of triples (query)'])
triplesV = 1
except (ValueError, TypeError):
triplesV = 0
try:
numT = int(row[' Number of triples (metadata)'])
triplesV = 1
except (ValueError, TypeError):
triplesV = 0
try:
numERe = int(row['Number of entities counted with regex'])
entitiesV = 1
except (ValueError,TypeError):
entitiesV = 0
if entitiesV == 0:
try:
numE = int(row['Number of entities'])
entitiesV = 1
except (ValueError, TypeError):
entitiesV = 0
try:
numProp = int(row['Number of property'])
numPropV = 1
except (ValueError, TypeError):
numPropV = 0
amount_score = ((triplesV + entitiesV + numPropV ) * weigth) / AMOUNT_METRICS
self.kgs_quality_data.loc[index,'Amount of data score'] = amount_score
def versatilityScore(self,weight):
for index, row in self.kgs_quality_data.iterrows():
try:
serializationF = ast.literal_eval(row['Serialization formats'])
if isinstance(serializationF,list):
if len(serializationF) > 0:
seriValue = 1
else:
seriValue = 0
else:
seriValue = 0
except:
seriValue = 0
try:
languages = ast.literal_eval(row['Languages (query)'])
if isinstance(languages, list):
if len(languages) > 0:
langsV = 1
else:
langsV = 0
else:
langsV = 0
except:
langsV = 0
try:
if row['Sparql endpoint'] == 'Available' and (row['Availability of RDF dump (metadata)'] in [1,'1','True',True] or row['Availability of RDF dump (query)'] in ['True', True,1,'1']):
accessibilityV = 1
else:
accessibilityV = 0
except:
accessibilityV = 0
versatility_score = ((seriValue + langsV + accessibilityV) * weight) / VERSATILITY_METRICS
self.kgs_quality_data.loc[index,'Versatility score'] = versatility_score
def write_data_on_csv(self):
self.kgs_quality_data.to_csv('./Analysis results/2023-11-27_edited.csv',index=False)
d = RecalculateScore('./Analysis results/2023-11-27.csv',20)
d.availabilityScore(1)
d.licensingScore(1)
d.interlinkingScore(1)
d.securityScore(1)
#d.performanceScore(1)
d.accuracyScore(1)
d.concisenessScore(1)
d.verifiabilityScore(1)
d.reputationScore(1)
d.believabilityScore(1)
d.currencyScore(1)
d.volatilityScore(1)
d.completenessScore(1)
d.amountScore(1)
d.versatilityScore(1)
d.write_data_on_csv()