diff --git a/R/calibration.R b/R/calibration.R index a117a01..36d19ac 100644 --- a/R/calibration.R +++ b/R/calibration.R @@ -59,7 +59,7 @@ tempcal <- function(Tc, #' calibration #' \deqn{y = a \times 10^6 / T^2 + b}{y = a * 10^6 / T^2 + b} with \eqn{T} in Kelvin, #' is expressed as a function of \eqn{T_C} (in degrees Celsius): -#' \deqn{T_C = \sqrt((a \times 10^6) / (y - b)) - 273.15}{T[C] = sqrt((a * 10^6) / (y - b)) - 273.15} +#' \deqn{T_C = \sqrt{(a \times 10^6) / (y - b)} - 273.15}{T[C] = sqrt((a * 10^6) / (y - b)) - 273.15} #' #' Defaults to Bonifacie et al. 2017 \deqn{\Delta_47 = (0.0449 \pm 0.001 \times #' 10^6) / T^2 + (0.167 \pm 0.01)} diff --git a/man/revcal.Rd b/man/revcal.Rd index fe32e72..7b254eb 100644 --- a/man/revcal.Rd +++ b/man/revcal.Rd @@ -36,7 +36,7 @@ A clumped isotope temperature calibration in reversed form, where the calibration \deqn{y = a \times 10^6 / T^2 + b}{y = a * 10^6 / T^2 + b} with \eqn{T} in Kelvin, is expressed as a function of \eqn{T_C} (in degrees Celsius): -\deqn{T_C = \sqrt((a \times 10^6) / (y - b)) - 273.15}{T[C] = sqrt((a * 10^6) / (y - b)) - 273.15} +\deqn{T_C = \sqrt{(a \times 10^6) / (y - b)} - 273.15}{T[C] = sqrt((a * 10^6) / (y - b)) - 273.15} } \details{ Defaults to Bonifacie et al. 2017 \deqn{\Delta_47 = (0.0449 \pm 0.001 \times