-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyapp.py
72 lines (51 loc) · 2.14 KB
/
myapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import streamlit as st
from PIL import Image
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
import numpy as np
import joblib
import os
from keras.models import Model
vgg_model = VGG16()
vgg_model = Model(inputs=vgg_model.inputs, outputs=vgg_model.layers[-2].output)
# Load the caption generation model and tokenizer
model = load_model('best_model.h5')
tokenizer = joblib.load('my_tokenizer.pkl')
max_length = 35
def idx_to_word(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
def predict_caption(model, image, tokenizer, max_length):
in_text = 'startseq'
for i in range(max_length):
sequence = tokenizer.texts_to_sequences([in_text])[0]
sequence = pad_sequences([sequence], max_length)
yhat = model.predict([image, sequence], verbose=0)
yhat = np.argmax(yhat)
word = idx_to_word(yhat, tokenizer)
if word is None:
break
in_text += " " + word
if word == 'endseq':
break
return in_text
st.title("Image Captioning Web App")
# Upload image through Streamlit
uploaded_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
if uploaded_image is not None:
image = Image.open(uploaded_image).resize((224,224))
if st.button("predict caption"):
# Generate caption using the model
# image = load_img(image_path, target_size=(224, 224))
image_p = img_to_array(image)
image_p = image_p.reshape((1, image_p.shape[0], image_p.shape[1], image_p.shape[2]))
image_p = preprocess_input(image_p)
feature = vgg_model.predict(image_p, verbose=0)
caption = predict_caption(model, feature, tokenizer, max_length)
st.write("Caption:", caption)
# Display the uploaded image
st.image(image, caption="Uploaded Image", use_column_width=True)