-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain_classifier.py
57 lines (56 loc) · 2.3 KB
/
chain_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
from collections import OrderedDict
import numpy as np
import pandas as pd
from sklearn.base import clone
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.utils import shuffle
from evaluation_measures import *
from multilabel_classifier import MultilabelClassifier
class ChainClassifier(MultilabelClassifier):
"""docstring for ChainClassifier"""
def train(self, X, labels, k=10):
self.k = k
self.classifiers = OrderedDict()
self.labels = labels
k_folds = StratifiedKFold(n_splits=k)
training_set = X.drop(self.labels, axis=1)
outputs_for_eval = X.copy()
for label in self.labels:
self.classifiers[label] = clone(self.classifier)
# self.train_set = X
for label in self.labels:
# print(training_set.head())
# label_index = self.labels.index(label)
# labels_to_drop = self.labels[label_index:]
# print(labels_to_drop)
# training_set = training_set.drop(label, axis=1)
y_true = X[label]
k_folds = StratifiedKFold(n_splits=k)
# classifier_cv_outputs = np.array([])
for train_index, test_index in k_folds.split(training_set, y_true):
x_train, x_test = training_set.iloc[train_index, :], training_set.iloc[test_index, :]
y_train, y_test = y_true.iloc[train_index], y_true.iloc[test_index]
self.classifiers[label].partial_fit(x_train, y_train, classes=[0,1])
y_pred = self.classifiers[label].predict(x_test)
# classifier_cv_outputs = np.append(classifier_cv_outputs, y_pred)
outputs_for_eval.loc[test_index, label] = y_pred
training_set[label] = outputs_for_eval[label]
self.update_eval_measures(X, training_set)
self.print_mean_and_std_measures()
def classify(self, X):
X_hat = X.drop(self.labels, axis=1)
for label in self.classifiers:
y = X[label]
y_pred = self.classifiers[label].predict(X_hat)
y_pred_dict = OrderedDict([(label, y_pred)])
y_pred_df = pd.DataFrame.from_dict(y_pred_dict)
X_hat = pd.concat([X_hat, y_pred_df], axis=1)
print("GAcc = {}".format(global_accuracy(X[self.labels], X_hat[self.labels])))
print("MAcc = {}".format(mean_accuracy(X[self.labels], X_hat[self.labels])))
print("MLAcc = {}".format(multilabel_accuracy(X[self.labels], X_hat[self.labels])))
print("FMeasure = {}".format(f_measure(X[self.labels], X_hat[self.labels])))
def save(self):
pass
def load(self):
pass