-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
166 lines (137 loc) · 4.61 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
from torch.nn import functional as F
n_embed = 64
context_len = 64
batch_size = 32
max_iters = 3000
eval_interval = 500
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 100
n_blocks = 6
file = open("input.txt", "r")
content = file.read()
# default tokenizer
chars = sorted(list(set(content)))
vocab_size = len(chars)
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[ch] for ch in s]
decode = lambda l: ''.join([itos[n] for n in l])
data = None
n = 0
train_data = None
val_data = None
def set_params(dims, ctx, iters, blocks):
global n_embed, context_len, max_iters, n_blocks
n_embed = dims
context_len = ctx
max_iters = iters
n_blocks = blocks
def set_tokenizer(enc, dec, vocab):
global encode, decode, vocab_size
encode = enc
decode = dec
vocab_size = vocab
def init():
global data, n, train_data, val_data
data = torch.tensor(encode(content), dtype=torch.long, device=device)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - context_len, (batch_size,))
x = torch.stack([data[i:i + context_len] for i in ix]).to(device)
y = torch.stack([data[i + 1:1 + i + context_len] for i in ix]).to(device)
return x, y
@torch.no_grad()
def estimate_loss(model):
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters, device=device)
for k in range(eval_iters):
X, Y = get_batch(split)
_, loss = model(X, Y)
losses[k] = loss
out[split] = losses.mean()
model.train()
return out
class Attention(nn.Module):
def __init__(self):
super().__init__()
self.key = nn.Linear(n_embed, n_embed, bias=False)
self.query = nn.Linear(n_embed, n_embed, bias=False)
self.value = nn.Linear(n_embed, n_embed, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(context_len, context_len)))
self.proj = nn.Linear(n_embed, n_embed)
def forward(self, x):
B, T, C, = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C ** -0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
v = self.value(x)
out = wei @ v
out = self.proj(out)
return out
class FeedForward(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self):
super().__init__()
self.sa = Attention()
self.ffwd = FeedForward()
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class Transformer(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(context_len, n_embed)
self.blocks = nn.Sequential(
*[Block() for _ in range(n_blocks)],
nn.LayerNorm(n_embed)
)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok = self.token_embedding_table(idx)
pos = self.position_embedding_table(torch.arange(T, device=device))
x = tok + pos
x = self.blocks(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
logits, _ = self(idx[:, -context_len:])
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
def generate_char(self, str):
new_idx = self.generate(torch.tensor([encode(str)], dtype=torch.long, device=device), max_new_tokens=1)
return decode(new_idx[0, :].tolist())