-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvsr_train.py
194 lines (157 loc) · 7.37 KB
/
vsr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import time
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model.EDVR_arch import EDVR, CharbonnierLoss
from youku import YoukuDataset
from utils.util import calculate_psnr
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=4, help="super resolution upscale factor")
parser.add_argument('--batchSize', type=int, default=4, help='training batch size')
parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accumulation before step")
parser.add_argument('--start_epoch', type=int, default=1, help='Starting epoch for continuing training')
parser.add_argument('--nEpochs', type=int, default=150, help='number of epochs to train for')
parser.add_argument('--snapshots', type=int, default=5, help='Snapshots')
parser.add_argument('--lr', type=float, default=4e-4, help='Learning Rate. Default=0.0004')
parser.add_argument('--patch_size', type=int, default=64, help='0 to use original frame size')
parser.add_argument('--v_freq', type=int, default=15, help='每个视频每代出现次数')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--threads', type=int, default=0, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=1, type=int, help='number of gpu')
parser.add_argument('--data_dir', type=str, default='/input/train')
parser.add_argument('--eval_dir', type=str, default='./dataset/eval', help="验证集文件夹")
# parser.add_argument('--other_dataset', type=bool, default=False, help="use other dataset than vimeo-90k")
parser.add_argument('--nFrames', type=int, default=7)
parser.add_argument('--data_augmentation', type=bool, default=False)
parser.add_argument('--padding', type=str, default="reflection",
help="padding: replicate | reflection | new_info | circle")
parser.add_argument('--model_type', type=str, default='EDVR')
# parser.add_argument('--residual', type=bool, default=False)
parser.add_argument('--pretrained_sr', default='weights/3x_edvr_epoch_84.pth', help='sr pretrained base model')
parser.add_argument('--pretrained', type=bool, default=False)
parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
opt = parser.parse_args()
gpus_list = range(opt.gpus)
cudnn.benchmark = True
cuda = opt.gpu_mode
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
print(opt)
avgpool = torch.nn.AvgPool2d((2, 2), stride=(2, 2))
def train(e):
epoch_loss = 0
model.train()
for batch_i, (lr_seq, gt) in enumerate(data_loader):
batches_done = len(data_loader) * e + batch_i
if cuda:
lr_seq = Variable(lr_seq, requires_grad=True).cuda(gpus_list[0])
gt = Variable(gt, requires_grad=True).cuda(gpus_list[0])
optimizer.zero_grad()
t0 = time.time()
prediction = model(lr_seq)
loss = criterion(prediction, gt)
t1 = time.time()
epoch_loss += loss.item()
loss.backward()
optimizer.step()
if batches_done % opt.gradient_accumulations:
# Accumulates gradient before each step
# optimizer.step()
# optimizer.zero_grad()
pass
print(f"===> Epoch[{e}]({batch_i}/{len(data_loader)}):",
f" Loss: {loss.item():.4f} || Timer: {(t1 - t0):.4f} sec.")
print(f"===> Epoch {e} Complete: Avg. Loss: {epoch_loss / len(data_loader):.4f}")
def eval_func():
epoch_loss = 0
t_psnr = 0
model.load_state_dict(torch.load(opt.save_folder + '4x_EDVRyk_epoch_54.pth'))
model.eval()
for batch_i, (lr_seq, gt) in enumerate(data_loader):
if cuda:
lr_seq = Variable(lr_seq, requires_grad=False).cuda(gpus_list[0])
gt = Variable(gt, requires_grad=False).cuda(gpus_list[0])
optimizer.zero_grad()
t0 = time.time()
with torch.no_grad():
prediction = model(lr_seq)
loss = criterion(prediction, gt)
t1 = time.time()
epoch_loss += loss.item()
y_lr, y_gt = prediction[:, 0, :, :], gt[:, 0, :, :]
y_lr, y_gt = y_lr.cpu().numpy() * 255, y_gt.cpu().numpy() * 255
# 只计算Y通道PSNR
avg_psnr = calculate_psnr(y_lr, y_gt)
t_psnr += avg_psnr
print(f"===> eval({batch_i}/{len(data_loader)}): PSNR: {avg_psnr:.4f}",
f" Loss: {loss.item():.4f} || Timer: {(t1 - t0):.4f} sec.")
t_psnr /= len(data_loader)
print(f"===> eval Complete: Avg PSNR: {t_psnr}",
f", Avg. Loss: {epoch_loss / len(data_loader):.4f}")
return t_psnr
def checkpoint(epoch_now):
model_out_path = opt.save_folder + str(
opt.upscale_factor) + 'x_' + opt.model_type + 'yk' + "_epoch_{}.pth".format(epoch_now)
torch.save(model.state_dict(), model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
print('===> Loading dataset')
train_set = YoukuDataset(opt.data_dir, opt.upscale_factor, opt.nFrames,
opt.data_augmentation, opt.patch_size, opt.padding, v_freq=opt.v_freq)
eval_set = YoukuDataset(opt.eval_dir, opt.upscale_factor, opt.nFrames,
opt.data_augmentation, opt.patch_size, opt.padding, v_freq=opt.v_freq)
data_loader = DataLoader(dataset=train_set, batch_size=opt.batchSize,
shuffle=True, num_workers=opt.threads,
collate_fn=train_set.collate_fn)
eval_loader = DataLoader(dataset=eval_set, batch_size=opt.batchSize,
shuffle=True, num_workers=opt.threads,
collate_fn=train_set.collate_fn)
print('===> Building model ', opt.model_type)
if opt.model_type == 'EDVR':
model = EDVR(64, opt.nFrames, groups=8, front_RBs=5, back_RBs=40) # TODO edvr参数
else:
model = None
if cuda:
model = torch.nn.DataParallel(model, device_ids=gpus_list)
criterion = CharbonnierLoss()
if opt.pretrained:
model_name = os.path.join(opt.save_folder + opt.pretrained_sr)
if os.path.exists(model_name):
model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage))
print('Pre-trained SR model is loaded.')
if cuda:
model = model.cuda(gpus_list[0])
criterion = criterion.cuda(gpus_list[0])
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
doEval = False
if doEval:
eval_func()
else:
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(epoch)
# eval() # todo 需加入在验证集检验,满足要求停机
# todo learning rate is decayed by a factor of 10 every half of total epochs
if (epoch + 1) % (opt.nEpochs / 2) == 0:
for param_group in optimizer.param_groups:
param_group['lr'] /= 10.0
print(f"Learning rate decay: lr={optimizer.param_groups[0]['lr']}")
if (epoch + 1) % opt.snapshots == 0:
checkpoint(epoch)
"""
需要调节的:
- nf 默认64,是卷积的通道
- padding
- nFrames
- lr 的更新
- batch size
- patch size
- v freq 每个视频每epoch抽帧次数
"""