forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clockless_arm_k20.h
144 lines (115 loc) · 4.25 KB
/
clockless_arm_k20.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#ifndef __INC_CLOCKLESS_ARM_K20_H
#define __INC_CLOCKLESS_ARM_K20_H
// Definition for a single channel clockless controller for the k20 family of chips, like that used in the teensy 3.0/3.1
// See clockless.h for detailed info on how the template parameters are used.
#if defined(FASTLED_TEENSY3)
template <uint8_t DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 500>
class ClocklessController : public CLEDController {
typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<DATA_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
FastPin<DATA_PIN>::setOutput();
mPinMask = FastPin<DATA_PIN>::mask();
mPort = FastPin<DATA_PIN>::port();
}
virtual void clearLeds(int nLeds) {
showColor(CRGB(0, 0, 0), nLeds, 0);
}
protected:
// set all the leds on the controller to a given color
virtual void showColor(const struct CRGB & rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
MS_COUNTER += (1 + (microsTaken / 1000));
sei();
mWait.mark();
}
virtual void show(const struct CRGB *rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
MS_COUNTER += (1 + (microsTaken / 1000));
sei();
mWait.mark();
}
#ifdef SUPPORT_ARGB
virtual void show(const struct CARGB *rgbdata, int nLeds, CRGB scale) {
PixelController<RGB_ORDER> pixels(rgbdata, nLeds, scale, getDither());
mWait.wait();
cli();
uint32_t clocks = showRGBInternal(pixels);
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
MS_COUNTER += (1 + (microsTaken / 1000));
sei();
mWait.mark();
}
#endif
template<int BITS> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register data_ptr_t port, register data_t hi, register data_t lo, register uint8_t & b) {
for(register uint32_t i = BITS-1; i > 0; i--) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
FastPin<DATA_PIN>::fastset(port, hi);
if(b&0x80) {
while((next_mark - ARM_DWT_CYCCNT) > (T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
} else {
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
}
b <<= 1;
}
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
FastPin<DATA_PIN>::fastset(port, hi);
if(b&0x80) {
while((next_mark - ARM_DWT_CYCCNT) > (T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
} else {
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t showRGBInternal(PixelController<RGB_ORDER> & pixels) {
// Get access to the clock
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
ARM_DWT_CYCCNT = 0;
register data_ptr_t port = FastPin<DATA_PIN>::port();
register data_t hi = *port | FastPin<DATA_PIN>::mask();;
register data_t lo = *port & ~FastPin<DATA_PIN>::mask();;
*port = lo;
// Setup the pixel controller and load/scale the first byte
pixels.preStepFirstByteDithering();
register uint8_t b = pixels.loadAndScale0();
uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
while(pixels.has(1)) {
pixels.stepDithering();
// Write first byte, read next byte
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.loadAndScale1();
// Write second byte, read 3rd byte
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.loadAndScale2();
// Write third byte, read 1st byte of next pixel
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.advanceAndLoadAndScale0();
};
return ARM_DWT_CYCCNT;
}
};
#endif
#endif