forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_dqn.py
70 lines (59 loc) · 2.18 KB
/
run_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Run an experiment."""
from absl import app
from absl import flags
import tensorflow.compat.v1 as tf
from option_keyboard import configs
from option_keyboard import dqn_agent
from option_keyboard import environment_wrappers
from option_keyboard import experiment
from option_keyboard import scavenger
FLAGS = flags.FLAGS
flags.DEFINE_integer("num_episodes", 10000, "Number of training episodes.")
flags.DEFINE_integer("report_every", 200,
"Frequency at which metrics are reported.")
flags.DEFINE_string("output_path", None, "Path to write out training curves.")
def main(argv):
del argv
# Create the task environment.
env_config = configs.get_task_config()
env = scavenger.Scavenger(**env_config)
env = environment_wrappers.EnvironmentWithLogging(env)
# Create the flat agent.
agent = dqn_agent.Agent(
obs_spec=env.observation_spec(),
action_spec=env.action_spec(),
network_kwargs=dict(
output_sizes=(64, 128),
activate_final=True,
),
epsilon=0.1,
additional_discount=0.9,
batch_size=10,
optimizer_name="AdamOptimizer",
optimizer_kwargs=dict(learning_rate=3e-4,))
_, ema_returns = experiment.run(
env,
agent,
num_episodes=FLAGS.num_episodes,
report_every=FLAGS.report_every)
if FLAGS.output_path:
experiment.write_returns_to_file(FLAGS.output_path, ema_returns)
if __name__ == "__main__":
tf.disable_v2_behavior()
app.run(main)