-
Notifications
You must be signed in to change notification settings - Fork 1
/
CITATION.cff
63 lines (63 loc) · 2.44 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
cff-version: 1.2.0
title: 'Evolver: Meta-optimizing multi-objective metaheuristics'
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: José F.
family-names: Aldana-Martín
orcid: 'https://orcid.org/0000-0002-4845-762X'
email: jfaldanam@uma.es
affiliation: >-
ITIS Software, Edificio de Investigación Ada Byron,
University of Málaga, Málaga, 29071, Spain Dept. de
Lenguajes y Ciencias de la Computación, University of
Málaga, Málaga, 29071, Spain
- family-names: Durillo
given-names: 'Juan J. '
email: durillo@lrz.de
affiliation: >-
Leibniz Supercomputing Centre of the Bavarian Academy
of Sciences and Humanities, Garching bei Muenchen,
Germany
orcid: 'https://orcid.org/0000-0002-8023-6392'
- given-names: Antonio J.
family-names: Nebro
email: ajnebro@uma.es
affiliation: >-
ITIS Software, Edificio de Investigación Ada Byron,
University of Málaga, Málaga, 29071, Spain Dept. de
Lenguajes y Ciencias de la Computación, University of
Málaga, Málaga, 29071, Spain
orcid: 'https://orcid.org/0000-0001-5580-0484'
identifiers:
- type: doi
value: 10.1016/j.softx.2023.101551
description: Published DOI of the related paper
repository-code: 'https://github.com/jMetal/Evolver'
url: 'https://github.com/jMetal/Evolver/blob/main/README.md'
abstract: >-
Evolver is a tool based on the formulation of the
automatic configuration and design of multi-objective
metaheuristics as a multi-objective optimization problem
that can be solved by using the same kind of algorithms;
i.e., we are applying a meta-optimization approach.
Evolver provides highly configurable implementations of
representative multi-objective solvers which can be
automatically configured from a number of multi-objective
problems used as the training set and a list of quality
indicators which are the objectives to be optimized. Our
tool is based on the jMetal framework, so a large number
of existing algorithms can be used as meta-optimizers. A
graphical user interface allows scientists to easily
define auto-configuration scenarios, thus simplifying the
complex process of finding high-quality algorithm
settings.
keywords:
- Multi-objective optimization
- metaheuristics auto-configuration and auto-design
- framework
- jMetal
license: MIT
date-released: '2023-10-10'