-
Notifications
You must be signed in to change notification settings - Fork 1
/
Prueba_de_¬P∨Q⊢P→Q.lean
164 lines (145 loc) · 2.51 KB
/
Prueba_de_¬P∨Q⊢P→Q.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
-- Prueba de ¬P ∨ Q ⊢ P → Q
-- ========================
-- ----------------------------------------------------
-- Ej. 1. (p. 15) Demostrar
-- ¬P ∨ Q ⊢ P → Q
-- ----------------------------------------------------
import tactic
variables (P Q : Prop)
-- 1ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( assume h5 : Q,
show Q, from h5)
-- 2ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( assume h5 : Q, h5)
-- 3ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
( λ h5, h5)
-- 4ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
have h4 : false,
from h3 h2,
show Q,
from false.elim h4)
id
-- 5ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P,
show Q,
from false.elim (h3 h2))
id
-- 6ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( assume h3 : ¬P, false.elim (h3 h2))
id
-- 7ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
assume h2 : P,
or.elim h1
( λ h3, false.elim (h3 h2))
id
-- 8ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, or.elim h1 (λ h3, false.elim (h3 h2)) id
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, h1.elim (λ h3, false.elim (h3 h2)) id
example
(h1 : ¬P ∨ Q)
: P → Q :=
λ h2, h1.elim (λ h3, (h3 h2).elim) id
-- 9ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
-- by library_search
imp_iff_not_or.mpr h1
-- 10ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ apply false.rec,
exact h3 h2, },
{ exact h4, },
end
-- 11ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ exact false.elim (h3 h2), },
{ exact h4, },
end
-- 12ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
begin
intro h2,
cases h1 with h3 h4,
{ exfalso,
exact h3 h2, },
{ exact h4, },
end
-- 13ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
-- by hint
by tauto
-- 14ª demostración
example
(h1 : ¬P ∨ Q)
: P → Q :=
by finish