-
Notifications
You must be signed in to change notification settings - Fork 1
/
Pruebas_de_P→Q⊢¬P∨Q.lean
167 lines (148 loc) · 2.57 KB
/
Pruebas_de_P→Q⊢¬P∨Q.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
-- Pruebas de P → Q ⊢ ¬P ∨ Q
-- =========================
-- ----------------------------------------------------
-- Ej. 1. (p. 24) Demostrar
-- P → Q ⊢ ¬P ∨ Q
-- ----------------------------------------------------
import tactic
variables (P Q : Prop)
open_locale classical
-- 1ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( assume h3 : P,
have h4 : Q,
from h1 h3,
show ¬P ∨ Q,
from or.inr h4)
( assume h5 : ¬P,
show ¬P ∨ Q,
from or.inl h5)
-- 2ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( assume h3 : P,
have h4 : Q,
from h1 h3,
show ¬P ∨ Q,
from or.inr h4)
( assume h5 : ¬P,
or.inl h5)
-- 3ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( assume h3 : P,
have h4 : Q,
from h1 h3,
show ¬P ∨ Q,
from or.inr h4)
( λ h5, or.inl h5)
-- 4ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( assume h3 : P,
have h4 : Q,
from h1 h3,
or.inr h4)
( λ h5, or.inl h5)
-- 5ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( assume h3 : P,
or.inr (h1 h3))
( λ h5, or.inl h5)
-- 6ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
have h2 : P ∨ ¬P,
from em P,
or.elim h2
( λ h3, or.inr (h1 h3))
( λ h5, or.inl h5)
-- 7ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
or.elim (em P)
( λ h3, or.inr (h1 h3))
( λ h5, or.inl h5)
example
(h1 : P → Q)
: ¬P ∨ Q :=
(em P).elim
( λ h3, or.inr (h1 h3))
( λ h5, or.inl h5)
-- 8ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
-- by library_search
not_or_of_imp h1
-- 9ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
if h3 : P then or.inr (h1 h3) else or.inl h3
-- 10ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
begin
by_cases h2 : P,
{ apply or.inr,
exact h1 h2, },
{ exact or.inl h2, },
end
-- 11ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
begin
by_cases h2 : P,
{ exact or.inr (h1 h2), },
{ exact or.inl h2, },
end
-- 12ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
begin
by_cases h2 : P,
{ right,
exact h1 h2, },
{ left,
exact h2, },
end
-- 13ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
-- by hint
by tauto
-- 14ª demostración
example
(h1 : P → Q)
: ¬P ∨ Q :=
-- by hint
by finish