-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathControlBothMotors.py
133 lines (94 loc) · 5.04 KB
/
ControlBothMotors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Controls both the left and right motors as a task.
"""
from pyb import Timer, Pin
from task_share import Share, Queue
from RomiCoder import RomiCoder
from RomiMotor import RomiMotor
from utime import sleep_ms
import QTRSensors
from ClosedLoop import ClosedLoop
from math import sin, cos, radians
class ControlBothMotors:
def __init__(self, kp, ki, kd, s_leftRequestedSpeed, s_rightRequestedSpeed, s_xCoord: Share, s_yCoord: Share, s_heading: Share):
"""Controls both motor speeds in closed loop, taking data straight from their encoders.
Also updates a running XY position given IMU heading
Args:
kp (float): Proportional gain.
ki (float): Integral gain.
kd (float): Derivative gain.
s_leftRequestedSpeed (Share): Conveys speed requested by LineFollower to left motor control loop.
s_rightRequestedSpeed (Share): Conveys speed requested by LineFollower to right motor control loop.
s_xCoord (Share): Romi field x coordinate.
s_yCoord (Share): Romi field y coordinate.
s_heading (Share): Romi field heading.
"""
self._kp = kp
self._ki = ki
self._kd = kd
self._leftRequestedSpeed = s_leftRequestedSpeed
self._rightRequestedSpeed = s_rightRequestedSpeed
#init state
self._state = 0
self._leftEncoder = RomiCoder(Pin.cpu.B6, Pin.cpu.B7, 65535, 0, 4)
tim1 = Timer(1, freq=20_000)
self._leftMotor = RomiMotor(tim1, Pin(Pin.cpu.B4, mode=Pin.OUT_PP), Pin(Pin.cpu.A8, mode=Pin.ALT, alt=Pin.AF1_TIM1), 1, Pin(Pin.cpu.B10, mode=Pin.OUT_PP))
self._rightEncoder = RomiCoder(Pin.cpu.C6, Pin.cpu.C7, 65535, 0, 8)
tim3 = Timer(3, freq=20_000)
self._rightMotor = RomiMotor(tim3, Pin(Pin.cpu.B3, mode=Pin.OUT_PP), Pin(Pin.cpu.C8, mode=Pin.ALT, alt=Pin.AF2_TIM3), 3, Pin(Pin.cpu.B5, mode=Pin.OUT_PP))
self._leftPID = ClosedLoop(self._kp, self._ki, self._kd, -((2^32)-1), ((2^32)-1))
self._rightPID = ClosedLoop(self._kp, self._ki, self._kd, -((2^32)-1), ((2^32)-1))
self._leftActualSpeed = 0
self._rightActualSpeed = 0
self._leftDistanceTraveled = 0
self._rightDistanceTraveled = 0
self._leftTimeDelta = 0
self._rightTimeDelta = 0
self._leftEfforts = 0
self._rightEfforts = 0
self._centerDistanceTraveled = 0
self._prevRightDistanceTraveled = 0
self._prevLeftDistanceTraveled = 0
self._xCoord = s_xCoord
self._yCoord = s_yCoord
self._heading = s_heading
def run(self):
"""Implementation of task as a generator function
Yields:
int : state
"""
while True:
#immediately go to run state after qtr initialization
if self._state == 0:
self._leftEncoder.zero()
self._rightEncoder.zero()
self._leftMotor.set_duty(0)
self._rightMotor.set_duty(0)
self._leftMotor.enable()
self._rightMotor.enable()
self._state = 1
elif self._state == 1:
self._leftEncoder.update()
self._rightEncoder.update()
self._leftActualSpeed = self._leftEncoder.get_rate()
self._rightActualSpeed = self._rightEncoder.get_rate()
self._leftDistanceTraveled = (self._leftEncoder.get_position() * 69.5/2) # wheel radius is 35mm nominal, actual diameter approx 69.5mm
self._rightDistanceTraveled = (self._rightEncoder.get_position() * 69.5/2)
self._leftTimeDelta = self._leftEncoder.get_timeDelta()
self._rightTimeDelta = self._rightEncoder.get_timeDelta()
self._leftPID.setTarget(self._leftRequestedSpeed.get())
self._rightPID.setTarget(self._rightRequestedSpeed.get())
self._leftEfforts = self._leftPID.calculateEfforts(self._leftActualSpeed, self._leftTimeDelta)
self._rightEfforts = self._rightPID.calculateEfforts(self._rightActualSpeed, self._rightTimeDelta)
self._leftMotor.set_duty(int(round(sum(self._leftEfforts), 0)))
self._rightMotor.set_duty(int(round(sum(self._rightEfforts), 0)))
_rightWheelDelta = (self._rightDistanceTraveled - self._prevRightDistanceTraveled)
_leftWheelDelta = (self._leftDistanceTraveled - self._prevLeftDistanceTraveled)
_centerlineDelta = (_leftWheelDelta + _rightWheelDelta)/2
self._xCoord.put(self._xCoord.get() + _centerlineDelta * cos(radians(self._heading.get())))
self._yCoord.put(self._yCoord.get() - _centerlineDelta * sin(radians(self._heading.get())))
# Happens at end
self._prevRightDistanceTraveled = self._rightDistanceTraveled
self._prevLeftDistanceTraveled = self._leftDistanceTraveled
#always will be in state 1
#gc.collect()
yield self._state