-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathlearn_bpe.py
231 lines (194 loc) · 9.02 KB
/
learn_bpe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text.
Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary
of a text to a configurable number of symbols, with only a small increase in the number of tokens.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
from __future__ import unicode_literals
import os
import sys
import inspect
import codecs
import re
import copy
import warnings
from collections import defaultdict, Counter
def update_vocabulary(vocab, file_name, is_dict=False):
"""Read text and return dictionary that encodes vocabulary
"""
#vocab = Counter()
with codecs.open(file_name, encoding='utf-8') as fobj:
for i, line in enumerate(fobj):
if is_dict:
try:
word, count = line.strip('\r\n ').split(' ')
except:
print('Failed reading vocabulary file at line {0}: {1}'.format(i, line))
sys.exit(1)
vocab[word] += int(count)
else:
for word in line.strip('\r\n ').split(' '):
if word:
vocab[word] += 1
return vocab
def update_pair_statistics(pair, changed, stats, indices):
"""Minimally update the indices and frequency of symbol pairs
if we merge a pair of symbols, only pairs that overlap with occurrences
of this pair are affected, and need to be updated.
"""
stats[pair] = 0
indices[pair] = defaultdict(int)
first, second = pair
new_pair = first+second
for j, word, old_word, freq in changed:
# find all instances of pair, and update frequency/indices around it
i = 0
while True:
# find first symbol
try:
i = old_word.index(first, i)
except ValueError:
break
# if first symbol is followed by second symbol, we've found an occurrence of pair (old_word[i:i+2])
if i < len(old_word)-1 and old_word[i+1] == second:
# assuming a symbol sequence "A B C", if "B C" is merged, reduce the frequency of "A B"
if i:
prev = old_word[i-1:i+1]
stats[prev] -= freq
indices[prev][j] -= 1
if i < len(old_word)-2:
# assuming a symbol sequence "A B C B", if "B C" is merged, reduce the frequency of "C B".
# however, skip this if the sequence is A B C B C, because the frequency of "C B" will be reduced by the previous code block
if old_word[i+2] != first or i >= len(old_word)-3 or old_word[i+3] != second:
nex = old_word[i+1:i+3]
stats[nex] -= freq
indices[nex][j] -= 1
i += 2
else:
i += 1
i = 0
while True:
try:
# find new pair
i = word.index(new_pair, i)
except ValueError:
break
# assuming a symbol sequence "A BC D", if "B C" is merged, increase the frequency of "A BC"
if i:
prev = word[i-1:i+1]
stats[prev] += freq
indices[prev][j] += 1
# assuming a symbol sequence "A BC B", if "B C" is merged, increase the frequency of "BC B"
# however, if the sequence is A BC BC, skip this step because the count of "BC BC" will be incremented by the previous code block
if i < len(word)-1 and word[i+1] != new_pair:
nex = word[i:i+2]
stats[nex] += freq
indices[nex][j] += 1
i += 1
def get_pair_statistics(vocab):
"""Count frequency of all symbol pairs, and create index"""
# data structure of pair frequencies
stats = defaultdict(int)
#index from pairs to words
indices = defaultdict(lambda: defaultdict(int))
for i, (word, freq) in enumerate(vocab):
prev_char = word[0]
for char in word[1:]:
stats[prev_char, char] += freq
indices[prev_char, char][i] += 1
prev_char = char
return stats, indices
def replace_pair(pair, vocab, indices):
"""Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'"""
first, second = pair
pair_str = ''.join(pair)
pair_str = pair_str.replace('\\','\\\\')
changes = []
pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)')
if sys.version_info < (3, 0):
iterator = indices[pair].iteritems()
else:
iterator = indices[pair].items()
for j, freq in iterator:
if freq < 1:
continue
word, freq = vocab[j]
new_word = ' '.join(word)
new_word = pattern.sub(pair_str, new_word)
new_word = tuple(new_word.split(' '))
vocab[j] = (new_word, freq)
changes.append((j, new_word, word, freq))
return changes
def prune_stats(stats, big_stats, threshold):
"""Prune statistics dict for efficiency of max()
The frequency of a symbol pair never increases, so pruning is generally safe
(until we the most frequent pair is less frequent than a pair we previously pruned)
big_stats keeps full statistics for when we need to access pruned items
"""
for item,freq in list(stats.items()):
if freq < threshold:
del stats[item]
if freq < 0:
big_stats[item] += freq
else:
big_stats[item] = freq
def learn_bpe(infile_names, outfile_name, num_symbols, min_frequency=2, verbose=False, is_dict=False, total_symbols=False):
"""Learn num_symbols BPE operations from vocabulary, and write to outfile.
"""
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer)
#vocab = get_vocabulary(infile, is_dict)
vocab = Counter()
for f in infile_names:
sys.stderr.write(f'Collecting vocab from {f}\n')
vocab = update_vocabulary(vocab, f, is_dict)
vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()])
sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True)
stats, indices = get_pair_statistics(sorted_vocab)
big_stats = copy.deepcopy(stats)
if total_symbols:
uniq_char_internal = set()
uniq_char_final = set()
for word in vocab:
for char in word[:-1]:
uniq_char_internal.add(char)
uniq_char_final.add(word[-1])
sys.stderr.write('Number of word-internal characters: {0}\n'.format(len(uniq_char_internal)))
sys.stderr.write('Number of word-final characters: {0}\n'.format(len(uniq_char_final)))
sys.stderr.write('Reducing number of merge operations by {0}\n'.format(len(uniq_char_internal) + len(uniq_char_final)))
num_symbols -= len(uniq_char_internal) + len(uniq_char_final)
sys.stderr.write(f'Write vocab file to {outfile_name}')
with codecs.open(outfile_name, 'w', encoding='utf-8') as outfile:
# version 0.2 changes the handling of the end-of-word token ('</w>');
# version numbering allows bckward compatibility
outfile.write('#version: 0.2\n')
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = max(stats.values()) / 10
for i in range(num_symbols):
if stats:
most_frequent = max(stats, key=lambda x: (stats[x], x))
# we probably missed the best pair because of pruning; go back to full statistics
if not stats or (i and stats[most_frequent] < threshold):
prune_stats(stats, big_stats, threshold)
stats = copy.deepcopy(big_stats)
most_frequent = max(stats, key=lambda x: (stats[x], x))
# threshold is inspired by Zipfian assumption, but should only affect speed
threshold = stats[most_frequent] * i/(i+10000.0)
prune_stats(stats, big_stats, threshold)
if stats[most_frequent] < min_frequency:
sys.stderr.write(f'no pair has frequency >= {min_frequency}. Stopping\n')
break
if verbose:
sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format(
i, most_frequent[0], most_frequent[1], stats[most_frequent]))
outfile.write('{0} {1}\n'.format(*most_frequent))
changes = replace_pair(most_frequent, sorted_vocab, indices)
update_pair_statistics(most_frequent, changes, stats, indices)
stats[most_frequent] = 0
if not i % 100:
prune_stats(stats, big_stats, threshold)