-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_trainer.py
204 lines (160 loc) · 6.64 KB
/
pytorch_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import numpy as np
# check if CUDA is available
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print('CUDA is not available. Training on CPU ...')
else:
print('CUDA is available! Training on GPU ...')
#####################################################################################################
# START OF DATA LOADING #
#####################################################################################################
from torchvision import datasets
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision.transforms as transforms
batch_size = 20
num_workers = 0
valid_size = 0.2
train_trans = transforms.Compose([
transforms.Resize((24, 24)),
transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dir = 'data/train'
test_dir = 'data/test'
train_data = datasets.ImageFolder(train_dir, transform=train_trans)
test_data = datasets.ImageFolder(test_dir, transform=train_trans)
# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]
# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
sampler=valid_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,
num_workers=num_workers)
classes = ['Closed','Open']
print(train_loader)
#####################################################################################################
# END OF DATA LOADING #
#####################################################################################################
import matplotlib.pyplot as plt
#%matplotlib inline
# helper function to un-normalize and display an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
plt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image
# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy() # convert images to numpy for display
# plot the images in the batch, along with the corresponding labels
fig = plt.figure(figsize=(25, 4))
# display 20 images
for idx in np.arange(10):
ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[])
imshow(images[idx])
ax.set_title(classes[labels[idx]])
#plt.show()
plt.close()
#####################################################################################################
# DEFINING THE NEURAL NETWORK #
#####################################################################################################
import torch.nn as nn
import CNN
model = CNN.Net()
#print(model)
if train_on_gpu:
model.cuda()
# loss func and optimizer
import torch.optim as optim
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr = 0.001)
#####################################################################################################
# START OF TRAINING #
#####################################################################################################
num_epochs = 30
valid_loss_min = np.Inf
valid_losses = []
train_losses = []
test_losses = []
accuracies = []
for epoch in range(1, num_epochs+1):
train_loss = 0
valid_loss = 0
test_loss = 0
##### TRANING STEP #####
model.train() # switch model modes
for data, labels in train_loader:
# move tensors to GPU if available
if train_on_gpu:
data, labels = data.cuda(), labels.cuda()
# clear grads
optimizer.zero_grad()
model_pred = model.forward(data)
loss = criterion(model_pred, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
##### VALIDATION STEP #####
model.eval()
for data, labels, in valid_loader:
# move tensors to GPU if available
if train_on_gpu:
data, labels = data.cuda(), labels.cuda()
output = model(data)
loss = criterion(output, labels)
valid_loss += loss.item() * data.size(0)
# calculate average losses
train_loss = train_loss/len(train_loader.sampler)
valid_loss = valid_loss/len(valid_loader.sampler)
train_losses.append(train_loss)
valid_losses.append(valid_loss)
with torch.no_grad():
test_loss = 0
accuracy = 0
model.eval()
for data, labels in test_loader:
if train_on_gpu:
data, labels = data.cuda(), labels.cuda()
log_ps = model.forward(data)
loss = criterion(log_ps, labels)
test_loss += loss
ps = torch.exp(log_ps) # since models output is log soft max, need to exp to get P
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
model.train()
test_losses.append(test_loss/len(test_loader))
accuracies.append(accuracy/len(test_loader))
print('\nEpoch: {} \nTraining Loss: {:.5f} \nValidation Loss: {:.5f}\nTest Loss: {:.5f}\nAccuracy: {:.3f}'.format(epoch,
train_loss, valid_loss, test_loss, accuracies[-1]))
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min, valid_loss))
torch.save(model.state_dict(), 'model_eyes.pt')
valid_loss_min = valid_loss
# GRAPH Training loss
f1 = plt.figure()
plt.plot(train_losses, label='Training loss')
plt.plot(valid_losses, label='Validation loss')
plt.legend(frameon=False)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()
plt.savefig('training_vs_validation_loss.png')
f2 = plt.figure()
plt.plot(accuracies, label='Accuracy')
plt.legend(frameon=False)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()
plt.savefig('training_accuracy.png')