-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
285 lines (225 loc) · 9.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import pandas as pd
import argparse
import os
from collections import OrderedDict
from glob import glob
import yaml
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import albumentations as albu
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from losses import BCEDiceLoss
from dataset import MyLidcDataset
from metrics import iou_score,dice_coef
from utils import AverageMeter, str2bool
from Unet.unet_model import UNet
from UnetNested.Nested_Unet import NestedUNet
def parse_args():
parser = argparse.ArgumentParser()
# model
parser.add_argument('--name', default="UNET",
help='model name: UNET',choices=['UNET', 'NestedUNET'])
parser.add_argument('--epochs', default=400, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch_size', default=12, type=int,
metavar='N', help='mini-batch size (default: 6)')
parser.add_argument('--early_stopping', default=50, type=int,
metavar='N', help='early stopping (default: 50)')
parser.add_argument('--num_workers', default=8, type=int)
# optimizer
parser.add_argument('--optimizer', default='Adam',
choices=['Adam', 'SGD'],
help='loss: ' +
' | '.join(['Adam', 'SGD']) +
' (default: Adam)')
parser.add_argument('--lr', '--learning_rate', default=1e-5, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay')
parser.add_argument('--nesterov', default=False, type=str2bool,
help='nesterov')
# data
parser.add_argument('--augmentation',type=str2bool,default=False,choices=[True,False])
config = parser.parse_args()
return config
def train(train_loader, model, criterion, optimizer):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter(),
'dice': AverageMeter()}
model.train()
pbar = tqdm(total=len(train_loader))
for input, target in train_loader:
input = input.cuda()
target = target.cuda()
output = model(input)
loss = criterion(output, target)
iou = iou_score(output, target)
dice = dice_coef(output, target)
# compute gradient and do optimizing step
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
avg_meters['dice'].update(dice, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice',avg_meters['dice'].avg)
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice',avg_meters['dice'].avg)])
def validate(val_loader, model, criterion):
avg_meters = {'loss': AverageMeter(),
'iou': AverageMeter(),
'dice': AverageMeter()}
# switch to evaluate mode
model.eval()
with torch.no_grad():
pbar = tqdm(total=len(val_loader))
for input, target in val_loader:
input = input.cuda()
target = target.cuda()
output = model(input)
loss = criterion(output, target)
iou = iou_score(output, target)
dice = dice_coef(output, target)
avg_meters['loss'].update(loss.item(), input.size(0))
avg_meters['iou'].update(iou, input.size(0))
avg_meters['dice'].update(dice, input.size(0))
postfix = OrderedDict([
('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice',avg_meters['dice'].avg)
])
pbar.set_postfix(postfix)
pbar.update(1)
pbar.close()
return OrderedDict([('loss', avg_meters['loss'].avg),
('iou', avg_meters['iou'].avg),
('dice',avg_meters['dice'].avg)])
def main():
# Get configuration
config = vars(parse_args())
# Make Model output directory
if config['augmentation']== True:
file_name= config['name'] + '_with_augmentation'
else:
file_name = config['name'] +'_base'
os.makedirs('model_outputs/{}'.format(file_name),exist_ok=True)
print("Creating directory called",file_name)
print('-' * 20)
print("Configuration Setting as follow")
for key in config:
print('{}: {}'.format(key, config[key]))
print('-' * 20)
#save configuration
with open('model_outputs/{}/config.yml'.format(file_name), 'w') as f:
yaml.dump(config, f)
#criterion = nn.BCEWithLogitsLoss().cuda()
criterion = BCEDiceLoss().cuda()
cudnn.benchmark = True
# create model
print("=> creating model" )
if config['name']=='NestedUNET':
model = NestedUNet(num_classes=1)
else:
model = UNet(n_channels=1, n_classes=1, bilinear=True)
model = model.cuda()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
params = filter(lambda p: p.requires_grad, model.parameters())
if config['optimizer'] == 'Adam':
optimizer = optim.Adam(params, lr=config['lr'], weight_decay=config['weight_decay'])
elif config['optimizer'] == 'SGD':
optimizer = optim.SGD(params, lr=config['lr'], momentum=config['momentum'],nesterov=config['nesterov'], weight_decay=config['weight_decay'])
else:
raise NotImplementedError
# Directory of Image, Mask folder generated from the preprocessing stage ###
# Write your own directory #
IMAGE_DIR = '/home/LUNG_DATA/Image/' #
MASK_DIR = '/home/LUNG_DATA/Mask/' #
#Meta Information #
meta = pd.read_csv('/home/LUNG_DATA/meta_csv/meta.csv') #
############################################################################
# Get train/test label from meta.csv
meta['original_image']= meta['original_image'].apply(lambda x:IMAGE_DIR+ x +'.npy')
meta['mask_image'] = meta['mask_image'].apply(lambda x:MASK_DIR+ x +'.npy')
train_meta = meta[meta['data_split']=='Train']
val_meta = meta[meta['data_split']=='Validation']
# Get all *npy images into list for Train
train_image_paths = list(train_meta['original_image'])
train_mask_paths = list(train_meta['mask_image'])
# Get all *npy images into list for Validation
val_image_paths = list(val_meta['original_image'])
val_mask_paths = list(val_meta['mask_image'])
print("*"*50)
print("The lenght of image: {}, mask folders: {} for train".format(len(train_image_paths),len(train_mask_paths)))
print("The lenght of image: {}, mask folders: {} for validation".format(len(val_image_paths),len(val_mask_paths)))
print("Ratio between Val/ Train is {:2f}".format(len(val_image_paths)/len(train_image_paths)))
print("*"*50)
# Create Dataset
train_dataset = MyLidcDataset(train_image_paths, train_mask_paths,config['augmentation'])
val_dataset = MyLidcDataset(val_image_paths,val_mask_paths,config['augmentation'])
#test_dataset = MyLidcDataset(test_image_paths, test_mask_paths)
# Create Dataloader
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config['batch_size'],
shuffle=True,
pin_memory=True,
drop_last=True,
num_workers=6)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=config['batch_size'],
shuffle=False,
pin_memory=True,
drop_last=False,
num_workers=6)
log= pd.DataFrame(index=[],columns= ['epoch','lr','loss','iou','dice','val_loss','val_iou'])
best_dice = 0
trigger = 0
for epoch in range(config['epochs']):
# train for one epoch
train_log = train(train_loader, model, criterion, optimizer)
# evaluate on validation set
val_log = validate(val_loader, model, criterion)
print('Training epoch [{}/{}], Training BCE loss:{:.4f}, Training DICE:{:.4f}, Training IOU:{:.4f}, Validation BCE loss:{:.4f}, Validation Dice:{:.4f}, Validation IOU:{:.4f}'.format(
epoch + 1, config['epochs'], train_log['loss'], train_log['dice'], train_log['iou'], val_log['loss'], val_log['dice'],val_log['iou']))
tmp = pd.Series([
epoch,
config['lr'],
train_log['loss'],
train_log['iou'],
train_log['dice'],
val_log['loss'],
val_log['iou'],
val_log['dice']
], index=['epoch', 'lr', 'loss', 'iou', 'dice', 'val_loss', 'val_iou','val_dice'])
log = log.append(tmp, ignore_index=True)
log.to_csv('model_outputs/{}/log.csv'.format(file_name), index=False)
trigger += 1
if val_log['dice'] > best_dice:
torch.save(model.state_dict(), 'model_outputs/{}/model.pth'.format(file_name))
best_dice = val_log['dice']
print("=> saved best model as validation DICE is greater than previous best DICE")
trigger = 0
# early stopping
if config['early_stopping'] >= 0 and trigger >= config['early_stopping']:
print("=> early stopping")
break
torch.cuda.empty_cache()
if __name__ == '__main__':
main()