This repository has been archived by the owner on Jul 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
208 lines (167 loc) · 8.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils import tensorboard
import dgl
import numpy as np
from tqdm import tqdm
from args import get_args, set_properties_to_args
from dataset import get_datasets
from model import TGAP
from util import *
import ipdb
def train_one_epoch(model, dataloader, optimizer, args, epoch, global_count, writer):
model.train()
epoch_count = 0
epoch_loss = 0.
epoch_correct1, epoch_correct3, epoch_correct10 = 0., 0., 0.
with tqdm(dataloader, desc=f"Train Ep {epoch}", mininterval=60) as tq:
for batch in tq:
batch["head"] = batch["head"].to(args.device)
batch["relation"] = batch["relation"].to(args.device)
batch["tail"] = batch["tail"].to(args.device)
batch["time"] = batch["time"].to(args.device)
batch["graph"].to(args.device)
attention_history = model(batch)
predicted_prob = attention_history[-1].transpose(0, 1)
# Compute loss
loss = F.nll_loss(torch.log(predicted_prob + 1e-12), batch["tail"])
if args.dataset == 'data/wikidata11k_aug':
if epoch_count % 16 == 0:
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
optimizer.zero_grad()
else:
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
loss = loss.item()
if loss != loss:
print(f"Nan came up at epoch {epoch}")
ipdb.set_trace()
epoch_loss += loss * batch["head"].size(0)
epoch_count += batch["head"].size(0)
avg_loss = epoch_loss / epoch_count
# Compute hits@k
epoch_correct1 += hits_at_k(predicted_prob, batch["tail"], k=1)
epoch_correct3 += hits_at_k(predicted_prob, batch["tail"], k=3)
epoch_correct10 += hits_at_k(predicted_prob, batch["tail"], k=10)
avg_hits1 = epoch_correct1 / epoch_count
avg_hits3 = epoch_correct3 / epoch_count
avg_hits10 = epoch_correct10 / epoch_count
if args.dataset == 'data/wikidata11k_aug':
if epoch_count % 16 == 0:
tq.set_postfix({'Avg loss': avg_loss}, refresh=False)
writer.add_scalar('Loss/Train_Avg_Loss', avg_loss,
global_step=global_count+epoch_count)
writer.add_scalar('Metric/Train_hits@1', avg_hits1,
global_step=global_count+epoch_count)
writer.add_scalar('Metric/Train_hits@3', avg_hits3,
global_step=global_count+epoch_count)
writer.add_scalar('Metric/Train_hits@10', avg_hits10,
global_step=global_count + epoch_count)
else:
tq.set_postfix({'Avg loss': avg_loss}, refresh=False)
writer.add_scalar('Loss/Train_Avg_Loss', avg_loss,
global_step=global_count + epoch_count)
writer.add_scalar('Metric/Train_hits@1', avg_hits1,
global_step=global_count + epoch_count)
writer.add_scalar('Metric/Train_hits@3', avg_hits3,
global_step=global_count + epoch_count)
writer.add_scalar('Metric/Train_hits@10', avg_hits10,
global_step=global_count + epoch_count)
return epoch_count
def evaluate(model, dataloader, args, epoch, writer=None, mode='Valid'):
model.eval()
total_count = 0
total_loss = 0.
total_correct1, total_correct3, total_correct10 = 0., 0., 0.
mrr = 0.
with tqdm(dataloader, desc=mode, mininterval=5) as tq:
for batch in tq:
batch["head"] = batch["head"].to(args.device)
batch["relation"] = batch["relation"].to(args.device)
batch["tail"] = batch["tail"].to(args.device)
batch["time"] = batch["time"].to(args.device)
batch["graph"].to(args.device)
with torch.no_grad():
attention_history = model(batch)
predicted_prob = attention_history[-1].detach().transpose(0, 1)
# Compute loss
loss = F.nll_loss(torch.log(predicted_prob + 1e-12), batch["tail"])
loss = loss.item()
total_loss += loss * batch["head"].size(0)
# Compute hits@k
total_correct1 += hits_at_k(predicted_prob, batch["tail"], k=1)
total_correct3 += hits_at_k(predicted_prob, batch["tail"], k=3)
total_correct10 += hits_at_k(predicted_prob, batch["tail"], k=10)
total_count += batch["head"].size(0)
# Compute MRR
sorted_prob = torch.argsort(predicted_prob, dim=-1, descending=True)
ranks = torch.tensor([sorted_prob[i].eq(batch['tail'][i]).nonzero().item()
for i in range(len(batch['tail']))])
mrr += torch.sum(torch.reciprocal(ranks.float() + 1))
tq.set_postfix({'Avg hits@1': total_correct1 / total_count})
avg_loss = total_loss / total_count
avg_hits1 = total_correct1 / total_count
avg_hits3 = total_correct3 / total_count
avg_hits10 = total_correct10 / total_count
mrr = mrr / total_count
if writer is not None:
writer.add_scalar(f"Loss/{mode}_Loss", avg_loss, global_step=epoch)
writer.add_scalar(f"Metric/{mode}_hits@1", avg_hits1, global_step=epoch)
writer.add_scalar(f"Metric/{mode}_hits@3", avg_hits3, global_step=epoch)
writer.add_scalar(f"Metric/{mode}_hits@10", avg_hits10, global_step=epoch)
return avg_loss, avg_hits1, avg_hits3, avg_hits10, mrr
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
dgl.random.seed(args.seed)
filenames = [args.train_fname, args.valid_fname, args.test_fname]
os.makedirs(args.tensorboard_dir, exist_ok=True)
os.makedirs(args.ckpt_dir, exist_ok=True)
# Configure dataset and dataloader
train_dataset, valid_dataset, test_dataset = get_datasets(filenames, args.device)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
collate_fn=train_dataset.collate, num_workers=4, pin_memory=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False,
collate_fn=valid_dataset.collate, num_workers=4, pin_memory=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
collate_fn=valid_dataset.collate, num_workers=4, pin_memory=True)
args = set_properties_to_args(args, train_dataset.kg.entity_vocab,
train_dataset.kg.relation_vocab, train_dataset.kg.time_vocab)
# Configure model, optimizer, scheduler
model = TGAP(args).to(args.device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True, patience=args.patience)
if args.test:
assert os.path.exists(args.ckpt), "Checkpoint file does not exist."
load_checkpoint(args.ckpt, model, optimizer, scheduler)
test_loss, test_hits1, test_hits3, test_hits10, mrr = evaluate(model, test_dataloader, args, 1, mode="Test")
print(f"Test Loss: {test_loss:.5} \n"
f"MRR: {mrr:.5} \n"
f"Hits@1: {test_hits1:.5} \n"
f"Hits@3: {test_hits3:.5} \n"
f"Hits@10: {test_hits10:.5}")
else:
best_valid_hits1 = -1.
global_count = 0
summary_writer = tensorboard.SummaryWriter(log_dir=args.tensorboard_dir)
summary_writer.add_text("Args", str(args), 0)
if args.ckpt:
load_checkpoint(args.ckpt, model, optimizer, scheduler)
for epoch in range(1, args.epoch + 1):
global_count += train_one_epoch(model, train_dataloader, optimizer, args,
epoch, global_count, summary_writer)
valid_loss, valid_hits1, _, _, _ = evaluate(model, valid_dataloader, args, epoch, summary_writer)
scheduler.step(valid_loss)
if best_valid_hits1 < valid_hits1:
best_valid_hits1 = valid_hits1
save_checkpoint(args.ckpt_dir, model, optimizer, scheduler, epoch, global_count, valid_hits1)
if __name__ == "__main__":
args = get_args()
main(args)