-
Notifications
You must be signed in to change notification settings - Fork 0
/
CriticNetwork.py
109 lines (94 loc) · 4.68 KB
/
CriticNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import math
from keras.initializations import normal, identity
from keras.models import model_from_json, load_model
from keras.engine.training import collect_trainable_weights
from keras.models import Sequential
from keras.layers import Dense, Flatten, Input, merge, Lambda, Activation
from keras.models import Sequential, Model
from keras.layers import Convolution2D
from keras.optimizers import Adam
import keras.backend as K
import tensorflow as tf
from keras.layers.normalization import BatchNormalization
HIDDEN1_UNITS = 300
HIDDEN2_UNITS = 600
class CriticNetwork(object):
def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE):
self.sess = sess
self.BATCH_SIZE = BATCH_SIZE
self.TAU = TAU
self.LEARNING_RATE = LEARNING_RATE
self.action_size = action_size
K.set_session(sess)
# Now create the model
self.model, self.action, self.state = self.create_critic_network(state_size, action_size)
self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)
self.action_grads = tf.gradients(self.model.output, self.action) # GRADIENTS for policy update
self.sess.run(tf.initialize_all_variables())
def gradients(self, states, actions):
return self.sess.run(self.action_grads, feed_dict={
self.state: states,
self.action: actions
})[0]
def target_train(self):
critic_weights = self.model.get_weights()
critic_target_weights = self.target_model.get_weights()
for i in xrange(len(critic_weights)):
critic_target_weights[i] = self.TAU * critic_weights[i] + (1 - self.TAU) * critic_target_weights[i]
self.target_model.set_weights(critic_target_weights)
def create_critic_network(self, state_size,action_dim):
print("Now we build the model")
S = Input(shape=[state_size])
A = Input(shape=[action_dim],name='action2')
w1 = Dense(HIDDEN1_UNITS, activation='relu')(S)
a1 = Dense(HIDDEN2_UNITS, activation='linear')(A)
h1 = Dense(HIDDEN2_UNITS, activation='linear')(w1)
h2 = merge([h1,a1],mode='sum')
h3 = Dense(HIDDEN2_UNITS, activation='relu')(h2)
V = Dense(action_dim,activation='linear')(h3)
model = Model(input=[S,A],output=V)
adam = Adam(lr=self.LEARNING_RATE)
model.compile(loss='mse', optimizer=adam)
return model, A, S
'''
def create_critic_network(self, state_size, action_dim):
print("Now we build cnn model")
I = Input(shape=image_size)
I0 = Convolution2D(64, 5, 5, subsample=(3, 3), activation='relu', init='uniform', border_mode='same', input_shape=image_size)(I)
I1 = Convolution2D(64, 4, 4, subsample=(2, 2), activation='linear', init='uniform', border_mode='same')(I0)
I2 = Convolution2D(64, 3, 3, subsample=(1, 1), activation='relu', init='uniform', border_mode='same')(I1)
I2_5 = Flatten()(I2)
I3 = Dense(512, activation='linear',init='uniform')(I2_5)
I4 = Dense(HIDDEN2_UNITS, activation='relu')(I3)
print("Now we build the model")
# S = Input(shape=[state_size])
A = Input(shape=[action_dim])
# w1 = Dense(HIDDEN1_UNITS, activation='relu')(S)
a1 = Dense(HIDDEN2_UNITS, activation='linear')(A)
# h1 = Dense(HIDDEN2_UNITS, activation='linear')(w1)
h2 = merge([a1, I4], mode='concat')
h3 = Dense(HIDDEN2_UNITS, activation='relu')(h2)
V = Dense(action_dim, activation='linear')(h3)
model = Model(input=[A, I], output=V)
adam = Adam(lr=self.LEARNING_RATE)
model.compile(loss='mse', optimizer=adam)
return model, A, I
S = Input(shape=state_size)
S_in = Lambda(lambda a: a / 255.0)(S)
conv1 = Convolution2D(16, nb_row=8, nb_col=8, subsample=(4, 4), activation='relu')(S_in)
batch_norm1 = BatchNormalization()(conv1)
conv2 = Convolution2D(32, nb_row=4, nb_col=4, subsample=(2, 2), activation='relu')(batch_norm1)
batch_norm2 = BatchNormalization()(conv2)
conv3 = Convolution2D(32, nb_row=4, nb_col=4, subsample=(2, 2), activation='relu')(batch_norm2)
batch_norm3 = BatchNormalization()(conv3)
flat = Flatten()(batch_norm3)
h1 = Dense(300, activation='relu')(flat)
A = Input(shape=[action_dim], name='action2')
a1 = Dense(300, activation='linear')(A)
h2 = merge([h1, a1], mode='sum')
h3 = Dense(HIDDEN2_UNITS, activation='relu')(h2)
V = Dense(action_dim, activation='linear')(h3)
model = Model(input=[S, A], output=V)
return model, A, S
'''