-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathadapter.py
171 lines (138 loc) · 6 KB
/
adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from torch import nn
from transformers.modeling_bert import BertIntermediate, BertOutput, BertLayer, BertEncoder, BertModel, BertForSequenceClassification
def get_nonlin_func(nonlin):
if nonlin == "tanh":
return torch.tanh
elif nonlin == "relu":
return torch.relu
elif nonlin == "gelu":
return nn.functional.gelu
elif nonlin == "sigmoid":
return torch.sigmoid
else:
raise ValueError("Unsupported nonlinearity!")
### Bottleneck Adapter
class BottleneckAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.adapter_input_size = config.hidden_size
self.adapter_latent_size = config.adapter_latent_size
self.non_linearity = get_nonlin_func(config.adapter_non_linearity)
self.residual = config.adapter_residual
# down projection
self.down_proj = nn.Linear(self.adapter_input_size, self.adapter_latent_size)
# up projection
self.up_proj = nn.Linear(self.adapter_latent_size, self.adapter_input_size)
self.init_weights()
def init_weights(self):
""" Initialize the weights -> so that initially we the whole Adapter layer is a near-identity function """
self.down_proj.weight.data.normal_(mean=0.0, std=0.02)
self.down_proj.bias.data.zero_()
self.up_proj.weight.data.normal_(mean=0.0, std=0.02)
self.up_proj.bias.data.zero_()
def forward(self, x):
output = self.up_proj(self.non_linearity(self.down_proj(x)))
if self.residual:
output = x + output
return output
### BERT
class AdapterBertIntermediate(BertIntermediate):
def __init__(self, config, layer_index):
super().__init__(config)
self.add_adapter = layer_index in config.layers_to_adapt and config.add_intermediate_adapter
if self.add_adapter:
self.intermediate_adapter = BottleneckAdapterLayer(config)
def forward(self, hidden_states):
# adapter extension
if self.add_adapter:
hidden_states = self.intermediate_adapter(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class AdapterBertOutput(BertOutput):
def __init__(self, config, layer_index):
super().__init__(config)
self.add_adapter = layer_index in config.layers_to_adapt
if self.add_adapter:
self.output_adapter = BottleneckAdapterLayer(config)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
# adapter extension
if self.add_adapter:
hidden_states = self.output_adapter(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class AdapterBertLayer(BertLayer):
def __init__(self, config, layer_index):
super().__init__(config)
self.intermediate = AdapterBertIntermediate(config, layer_index)
self.output = AdapterBertOutput(config, layer_index)
class AdapterBertEncoder(BertEncoder):
def __init__(self, config):
super().__init__(config)
self.layer = nn.ModuleList([AdapterBertLayer(config, i) for i in range(config.num_hidden_layers)])
class AdapterBertModel(BertModel):
def __init__(self, config):
super().__init__(config)
self.encoder = AdapterBertEncoder(config)
self.freeze_original_params(config)
def freeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = False
for i in range(config.num_hidden_layers):
if i in config.layers_to_adapt:
for param in self.encoder.layer[i].intermediate.intermediate_adapter.parameters():
param.requires_grad = True
for param in self.encoder.layer[i].output.output_adapter.parameters():
param.requires_grad = True
def unfreeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = True
class AdapterBertForSequenceClassification(BertForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.bert = AdapterBertModel(config)
self.bert.unfreeze_original_params(config)
### Parallel Adapter
class ParallelAdapterBertModel(BertModel):
def __init__(self, config):
super().__init__(config)
# parallel, adapter-BERT
self.parabert = BertModel(config.parabert_config)
# freezing the pre-trained BERT
self.freeze_original_params()
def freeze_original_params(self):
for param in self.parameters():
param.requires_grad = False
for param in self.parabert.parameters():
param.requires_grad = True
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
outputs_main = super().forward(input_ids, attention_mask, token_type_ids)
outputs_adapter = self.parabert(input_ids, attention_mask, token_type_ids)
outs_cls = []
outs_cls.append(outputs_main[1])
outs_cls.append(outputs_adapter[1])
concat_cls = torch.cat(outs_cls, dim = 1)
outs_tok = []
outs_tok.append(outputs_main[0])
outs_tok.append(outputs_adapter[0])
concat_tok = torch.cat(outs_tok, dim = 2)
outputs = (concat_tok, concat_cls)
return outputs
class ParallelAdapterBertForSequenceClassification(BertForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.bert = ParallelAdapterBertModel(config)
self.classifier = nn.Linear(config.hidden_size + config.parabert_config.hidden_size, self.config.num_labels)
### XLM-R