-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodeling_adapters.py
262 lines (215 loc) · 9.86 KB
/
modeling_adapters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
from torch import nn
from transformers.modeling_bert import BertIntermediate, BertOutput, BertLayer
from transformers.modeling_bert import BertEncoder, BertModel, BertForSequenceClassification
from transformers import RobertaModel, RobertaForSequenceClassification
from transformers import XLMRobertaModel, XLMRobertaForSequenceClassification
#from .modeling_biaffine import BertForBiaffineParsing, RobertaForBiaffineParsing, XLMRobertaForBiaffineParsing
from modeling_mcqa import BertForMultichoiceQA, RobertaForMultichoiceQA, XLMRobertaForMultichoiceQA
#from .modeling_mlm import BertForDynamicMLM, RobertaForDynamicMLM, XLMRobertaForDynamicMLM
from transformers import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers import XLMRobertaModel
from transformers import XLMRobertaConfig
from transformers import BertConfig, RobertaConfig
def get_nonlin_func(nonlin):
if nonlin == "tanh":
return torch.tanh
elif nonlin == "relu":
return torch.relu
elif nonlin == "gelu":
return nn.functional.gelu
elif nonlin == "sigmoid":
return torch.sigmoid
else:
raise ValueError("Unsupported nonlinearity!")
### Bottleneck Adapter
class BottleneckAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.adapter_input_size = config.hidden_size
self.adapter_latent_size = config.adapter_latent_size
self.non_linearity = get_nonlin_func(config.adapter_non_linearity)
self.residual = config.adapter_residual
# down projection
self.down_proj = nn.Linear(self.adapter_input_size, self.adapter_latent_size)
# up projection
self.up_proj = nn.Linear(self.adapter_latent_size, self.adapter_input_size)
self.init_weights()
def init_weights(self):
""" Initialize the weights -> so that initially we the whole Adapter layer is a near-identity function """
self.down_proj.weight.data.normal_(mean=0.0, std=0.02)
self.down_proj.bias.data.zero_()
self.up_proj.weight.data.normal_(mean=0.0, std=0.02)
self.up_proj.bias.data.zero_()
def forward(self, x):
output = self.up_proj(self.non_linearity(self.down_proj(x)))
if self.residual:
output = x + output
return output
### BERT
class AdapterBertConfig(BertConfig):
def __init__(self,
layers_to_adapt = list(range(12)),
adapter_non_linearity = "gelu",
adapter_latent_size = 64,
**kwargs
):
super().__init__(**kwargs)
self.layers_to_adapt = layers_to_adapt
self.adapter_latent_size = adapter_latent_size
self.adapter_non_linearity = adapter_non_linearity
class BottleneckAdapterBertConfig(AdapterBertConfig):
def __init__(self,
adapter_residual = True,
add_intermediate_adapter = True,last_layer_dropout = 0.2,hidden_size = 0.2,
**kwargs
):
super().__init__(**kwargs)
self.adapter_residual = adapter_residual
self.add_intermediate_adapter = add_intermediate_adapter
self.last_layer_dropout = last_layer_dropout
self.hidden_size = hidden_size
class AdapterBertIntermediate(BertIntermediate):
def __init__(self, config, layer_index):
super().__init__(config)
self.add_adapter = layer_index in config.layers_to_adapt and config.add_intermediate_adapter
if self.add_adapter:
self.intermediate_adapter = BottleneckAdapterLayer(config)
def forward(self, hidden_states):
# adapter extension
if self.add_adapter:
hidden_states = self.intermediate_adapter(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class AdapterBertOutput(BertOutput):
def __init__(self, config, layer_index):
super().__init__(config)
self.add_adapter = layer_index in config.layers_to_adapt
if self.add_adapter:
self.output_adapter = BottleneckAdapterLayer(config)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
# adapter extension
if self.add_adapter:
hidden_states = self.output_adapter(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class AdapterBertLayer(BertLayer):
def __init__(self, config, layer_index):
super().__init__(config)
self.intermediate = AdapterBertIntermediate(config, layer_index)
self.output = AdapterBertOutput(config, layer_index)
class AdapterBertEncoder(BertEncoder):
def __init__(self, config):
super().__init__(config)
self.layer = nn.ModuleList([AdapterBertLayer(config, i) for i in range(config.num_hidden_layers)])
class AdapterBertModel(BertModel):
def __init__(self, config):
super().__init__(config)
self.encoder = AdapterBertEncoder(config)
self.freeze_original_params(config)
def freeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = False
for i in range(config.num_hidden_layers):
if i in config.layers_to_adapt:
for param in self.encoder.layer[i].intermediate.intermediate_adapter.parameters():
param.requires_grad = True
for param in self.encoder.layer[i].output.output_adapter.parameters():
param.requires_grad = True
def unfreeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = True
class AdapterBertForSequenceClassification(BertForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.bert = AdapterBertModel(config)
self.bert.unfreeze_original_params(config)
# class AdapterBertForBiaffineParsing(BertForBiaffineParsing):
# def __init__(self, config):
# super().__init__(config)
# self.bert = AdapterBertModel(config)
class AdapterBertForMultichoiceQA(BertForMultichoiceQA):
def __init__(self, config):
super().__init__(config)
self.bert = AdapterBertModel(config)
self.bert.unfreeze_original_params(config)
# class AdapterBertForDynamicMLM(BertForDynamicMLM):
# def __init__(self, config):
# super().__init__(config)
# self.bert = AdapterBertModel(config)
### RoBERTa
class AdapterRobertaConfig(RobertaConfig):
def __init__(self,
layers_to_adapt = list(range(12)),
adapter_non_linearity = "gelu",
adapter_latent_size = 64,
**kwargs
):
super().__init__(**kwargs)
self.layers_to_adapt = layers_to_adapt
self.adapter_latent_size = adapter_latent_size
self.adapter_non_linearity = adapter_non_linearity
class BottleneckAdapterRobertaConfig(AdapterRobertaConfig):
def __init__(self,
adapter_residual = True,
add_intermediate_adapter = True,
**kwargs
):
super().__init__(**kwargs)
self.adapter_residual = adapter_residual
self.add_intermediate_adapter = add_intermediate_adapter
class AdapterRobertaModel(RobertaModel):
def __init__(self, config):
super().__init__(config)
self.encoder = AdapterBertEncoder(config)
self.freeze_original_params(config)
def freeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = False
for i in range(config.num_hidden_layers):
if i in config.layers_to_adapt:
for param in self.encoder.layer[i].intermediate.intermediate_adapter.parameters():
param.requires_grad = True
for param in self.encoder.layer[i].output.output_adapter.parameters():
param.requires_grad = True
def unfreeze_original_params(self, config):
for param in self.parameters():
param.requires_grad = True
class AdapterRobertaForSequenceClassification(RobertaForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.roberta = AdapterRobertaModel(config)
# class AdapterRobertaForBiaffineParsing(RobertaForBiaffineParsing):
# def __init__(self, config):
# super().__init__(config)
# self.roberta = AdapterRobertaModel(config)
class AdapterRobertaForMultichoiceQA(RobertaForMultichoiceQA):
def __init__(self, config):
super().__init__(config)
self.roberta = AdapterRobertaModel(config)
# class AdapterRobertaForDynamicMLM(RobertaForDynamicMLM):
# def __init__(self, config):
# super().__init__(config)
# self.roberta = AdapterRobertaModel(config)
### XLM-R
class BottleneckAdapterXLMRobertaConfig(BottleneckAdapterRobertaConfig):
config_class = XLMRobertaConfig
pretrained_config_archive_map = XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
class AdapterXLMRobertaModel(AdapterRobertaModel):
config_class = XLMRobertaConfig
pretrained_config_archive_map = XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
class AdapterXLMRobertaForSequenceClassification(AdapterRobertaForSequenceClassification):
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
# class AdapterXLMRobertaForBiaffineParsing(AdapterRobertaForBiaffineParsing):
# config_class = XLMRobertaConfig
# pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
class AdapterXLMRobertaForMultichoiceQA(AdapterRobertaForMultichoiceQA):
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
# class AdapterXLMRobertaForDynamicMLM(AdapterRobertaForDynamicMLM):
# config_class = XLMRobertaConfig
# pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP