-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodeling_mcqa.py
170 lines (130 loc) · 5.87 KB
/
modeling_mcqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import logging
import math
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import BertPreTrainedModel
from transformers import BertModel
from transformers.modeling_bert import BertLayer
from transformers import RobertaModel
from transformers import XLMRobertaConfig
from transformers import RobertaConfig
from transformers import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
import config as c
class BertForMultichoiceQA(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.last_layer_dropout)
self.classifier = nn.Sequential(nn.Linear(config.hidden_size, config.hidden_size),
nn.Tanh(),
nn.Linear(config.hidden_size, 1, bias = False))
self.init_weights()
def forward(self, batch):
answer_outputs = []
for i in range(self.num_labels):
tokids = batch[3 * i]
att_masks = batch[3 * i + 1]
tok_type_ids = batch[3 * i + 2]
outputs = self.bert(input_ids = tokids, attention_mask = att_masks, token_type_ids=tok_type_ids)
cls_rep = self.dropout(outputs[1])
lt = self.classifier(cls_rep)
answer_outputs.append(lt)
logits = torch.cat(answer_outputs, dim = 1)
outputs = (logits, )
labels = batch[-1]
loss_func = CrossEntropyLoss()
loss = loss_func(logits, labels)
outputs = (loss, ) + outputs
return outputs
##### XLM-R handling large batches
class LargeEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
self.model_gpu_split = c.large_model_gpu_split_layer
for i, layer_module in enumerate(self.layer):
if i >= self.model_gpu_split:
layer_module = layer_module.cuda(1)
else:
layer_module = layer_module.cuda(0)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if i == self.model_gpu_split:
hidden_states = hidden_states.cuda(1)
attention_mask = attention_mask.cuda(1)
if encoder_hidden_states:
encoder_hidden_states = encoder_hidden_states.cuda(1)
if encoder_attention_mask:
encoder_attention_mask = encoder_attention_mask.cuda(1)
if i >= self.model_gpu_split and head_mask[i]:
head_mask[i] = head_mask[i].cuda(1)
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
#####
class RobertaForMultichoiceQA(BertPreTrainedModel):
config_class = RobertaConfig
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Sequential(nn.Linear(config.hidden_size, config.hidden_size),
nn.Tanh(),
nn.Linear(config.hidden_size, 1, bias = False))
if hasattr(c, "large_model_gpu_split_layer"):
self.roberta.to("cuda:0")
self.roberta.encoder = LargeEncoder(config)
self.roberta.pooler.to("cuda:1")
self.dropout = self.dropout.cuda(1)
self.classifier = self.classifier.cuda(1)
self.init_weights()
def forward(self, batch):
answer_outputs = []
for i in range(self.num_labels):
tokids = batch[2 * i]
att_masks = batch[2 * i + 1]
outputs = self.roberta(input_ids = tokids, attention_mask = att_masks)
# for XLM-R large
sequence_output = self.dropout(outputs[1])
lt = self.classifier(sequence_output)
answer_outputs.append(lt)
logits = torch.cat(answer_outputs, dim = 1)
outputs = (logits, )
labels = batch[-1]
if hasattr(c, "large_model_gpu_split_layer"):
labels = labels.cuda(1)
loss_func = CrossEntropyLoss()
loss = loss_func(logits, labels)
outputs = (loss, ) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
class XLMRobertaForMultichoiceQA(RobertaForMultichoiceQA):
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP