-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
284 lines (223 loc) · 11 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
import glob
import json
import logging
import os
import random
import helper
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
AdamW,
get_linear_schedule_with_warmup,
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def prepare_optimizer_and_scheduler(model, t_total, params):
c = params["mcqa_config"]
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": c.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=c.learning_rate, eps=c.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=c.warmup_steps, num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(c.model_name_or_path, "optimizer.pt")) and os.path.isfile(os.path.join(c.model_name_or_path, "scheduler.pt")):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(c.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(c.model_name_or_path, "scheduler.pt")))
return optimizer, scheduler
def save_model(model, optimizer, scheduler, step, dev_scores, params):
# Save model checkpoint
c = params["mcqa_config"]
output_dir = os.path.join(c.output_dir, "best")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (model.module if hasattr(model, "module") else model)
model_to_save.save_pretrained(output_dir)
#torch.save(c, os.path.join(output_dir, "training_c.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
global_step_path = os.path.join(c.output_dir, "best", "global_step.txt")
helper.write_list(global_step_path, [str(step)])
if dev_scores:
eval_output_dir = os.path.join(c.output_dir, "eval")
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
output_eval_file = os.path.join(eval_output_dir, "eval_result.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format("XCOPA EN DEV"))
for key in sorted(dev_scores.keys()):
logger.info(" %s = %s", key, str(dev_scores[key]))
writer.write("%s = %s\n" % (key, str(dev_scores[key])))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
def train(train_dataset, eval_dataset, model, params):
""" Train the model """
c = params["mcqa_config"]
# enabling TensorBoard
tb_writer = SummaryWriter()
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=c.train_batch_size)
if c.max_steps > 0:
t_total = c.max_steps
c.num_train_epochs = c.max_steps // len(train_dataloader) + 1
else:
t_total = len(train_dataloader) * c.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
optimizer, scheduler = prepare_optimizer_and_scheduler(model, t_total, params)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", c.num_train_epochs)
logger.info(" Train batch size = %d", c.train_batch_size)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(c.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
global_step = int(helper.load_lines(os.path.join(c.model_name_or_path, "global_step.txt"))[0].strip())
except ValueError:
global_step = 0
epochs_trained = global_step // len(train_dataloader)
steps_trained_in_current_epoch = global_step % len(train_dataloader)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(epochs_trained, int(c.num_train_epochs), desc="Epoch", disable=False)
set_seed(c.seed) # Added here for reproductibility, every new training starts from the same seed, i.e., same parameter initialization
eval_steps_no_improvement = 0
stop_training = False
best_eval_res = -1000000 if c.eval_metric_increasing else 1000000
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=False)
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(c.device) for t in batch)
if params["task_type"] == "mcqa":
outputs = model(batch, params["model_params"])
else:
outputs = model(input_ids=batch[0], attention_mask=batch[1], token_type_ids=batch[2], labels=batch[3])
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
# parameter updates
loss.backward()
tr_loss += loss.item()
torch.nn.utils.clip_grad_norm_(model.parameters(), c.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad() # zeroing gradients afer update
global_step += 1
if c.logging_steps > 0 and global_step % c.logging_steps == 0:
print("Global step: " + str(global_step))
logs = {}
results = evaluate(eval_dataset, model, params)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / c.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
eval_res = results[c.eval_stop_metric]
if (c.eval_metric_increasing and eval_res < best_eval_res) or (not c.eval_metric_increasing and eval_res > best_eval_res):
eval_steps_no_improvement += 1
else:
eval_steps_no_improvement = 0
if eval_steps_no_improvement == c.num_evals_early_stop:
print("Early stopping training. ")
stop_training = True
break
if eval_steps_no_improvement == 0:
best_eval_res = eval_res
print("New best eval " + c.eval_stop_metric + ": " + str(best_eval_res))
print("Saving best model...")
save_model(model, optimizer, scheduler, global_step, results, params)
print("New best model saved!")
else:
print("No improvement for " + str(eval_steps_no_improvement) + " steps!")
print("Current Eval " + c.eval_stop_metric + ": " + str(eval_res))
print("Best Eval " + c.eval_stop_metric + " so far: " + str(best_eval_res))
if c.max_steps > 0 and global_step > c.max_steps:
epoch_iterator.close()
break
if (c.max_steps > 0 and global_step > c.max_steps) or stop_training:
train_iterator.close()
break
tb_writer.close()
return global_step, tr_loss / global_step, best_eval_res
def compute_performance(preds, golds):
if len(preds) != len(golds):
raise ValueError("Predictions and gold labels not of same length!")
results = {}
acc = len([i for i in range(len(preds)) if preds[i] == golds[i]]) / len(preds)
results["Accuracy"] = acc
return results
def evaluate(eval_dataset, model, params):
results = {}
c = params["mcqa_config"]
c.eval_batch_size = c.train_batch_size
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=c.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format("XCOPA VAL"))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", c.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
golds = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(c.device) for t in batch)
with torch.no_grad():
if params["task_type"] == "mcqa":
outputs = model(batch, params["model_params"])
else:
outputs = model(input_ids=batch[0], attention_mask=batch[1], token_type_ids=batch[2], labels=batch[3])
loss = outputs[0]
logits = outputs[1]
eval_loss += loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
golds = batch[-1].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
golds = np.append(golds, batch[-1].detach().cpu().numpy())
eval_loss = eval_loss / nb_eval_steps
results["Loss"] = eval_loss
preds = np.argmax(preds, axis=1)
result = compute_performance(preds, golds)
results.update(result)
return results