-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathdfq.py
293 lines (233 loc) · 13.1 KB
/
dfq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
import copy
import numpy as np
from utils import visualize_per_layer
from utils.quantize import UniformQuantize
def _quantize_error(param, num_bits=8, reduction='sum', signed=False):
"""!
reduction should be one of 'sum', 'mean', 'none', 'channel', default to 'sum'
"""
param = param.detach().clone()
with torch.no_grad():
param_quant = UniformQuantize().apply(param, num_bits, float(param.min()), float(param.max()), False, signed)
eps = param_quant - param
if reduction == 'sum':
eps = torch.sum(torch.abs(eps))
elif reduction == 'mean':
eps = torch.mean(eps)
elif reduction == 'channel':
eps = torch.sum(torch.abs(torch.sum(eps.view(eps.size(0), -1), -1)))
elif reduction == 'spatial':
eps = torch.sum(torch.abs(torch.sum(eps.view(eps.size(0), eps.size(1), -1), -1)))
return eps
def _layer_equalization(weight_first, weight_second, bias_first, bn_weight=None, bn_bias=None, s_range=(1e-8, 1e8), signed=False, eps=0):
num_group = 1
if weight_first.shape[0] != weight_second.shape[1]:
# group convolution
num_group = weight_first.shape[0] // weight_second.shape[1]
group_channels_i = weight_first.shape[0] // num_group
group_channels_o = weight_second.shape[0] // num_group
S = torch.zeros(weight_first.size(0))
# pdb.set_trace()
for g in range(num_group):
c_start_i = g * group_channels_i
c_end_i = (g + 1) * group_channels_i
weight_first_group = weight_first[c_start_i:c_end_i] # shape [k, c, h, w]
c_start_o = g * group_channels_o
c_end_o = (g + 1) * group_channels_o
weight_second_group = weight_second[c_start_o:c_end_o]
for ii in range(weight_second_group.shape[1]):
if signed:
range_1 = torch.max(torch.abs(weight_first_group[ii])) # signed
range_2 = torch.max(torch.abs(weight_second_group[:, ii])) # signed
else:
range_1 = torch.max(weight_first_group[ii]) - torch.min(weight_first_group[ii]) # unsigned
range_2 = torch.max(weight_second_group[:, ii]) - torch.min(weight_second_group[:, ii]) # unsigned
# 1 / s = (1 / r1) * sqrt(r1 * r2)
s = (1 / (range_1 + eps)) * torch.sqrt(range_1 * range_2 + eps)
s = max(s_range[0], min(s_range[1], s))
S[c_start_i + ii] = s
weight_first[c_start_i + ii].mul_(s)
if bn_weight is not None:
bn_weight[c_start_i + ii].mul_(s)
if bn_bias is not None:
bn_bias[c_start_i + ii].mul_(s)
if bias_first is not None:
bias_first[c_start_i + ii].mul_(s)
weight_second[c_start_o:c_end_o, ii].mul_(1/s)
return weight_first, weight_second, bias_first, S
def cross_layer_equalization(graph, relations, targ_type, s_range=[1e-8, 1e8], range_thres=0, converge_thres=2e-7, converge_count=20, signed=False, eps=0, visualize_state=False):
print("Start cross layer equalization")
with torch.no_grad():
diff = 10
count = 0
while diff > converge_thres and count < converge_count:
state_prev = copy.deepcopy(graph)
for rr in relations:
layer_first, layer_second, bn_idx = rr.get_idxs()
if visualize_state:
visualize_per_layer(graph[layer_first].weight.detach(), 'Before equalization')
if graph[layer_first].bias is None: # add a fake bias term
graph[layer_first].bias = nn.Parameter(data=torch.zeros((graph[layer_first].weight.size(0)), dtype=torch.float32), requires_grad=False)
# layer eualization
graph[layer_first].weight, graph[layer_second].weight, graph[layer_first].bias, S = \
_layer_equalization(graph[layer_first].weight,\
graph[layer_second].weight,\
graph[layer_first].bias,\
graph[bn_idx].fake_weight,\
graph[bn_idx].fake_bias, s_range=s_range, signed=signed, eps=eps)
rr.set_scale_vec(S)
if visualize_state:
visualize_per_layer(graph[layer_first].weight.detach(), 'After equalization')
diff_tmp = 0
for layer_idx in graph:
if type(graph[layer_idx]) in targ_type:
diff_tmp += float(torch.mean(torch.abs(graph[layer_idx].weight - state_prev[layer_idx].weight)))
if abs(diff - diff_tmp) > 1e-9:
count = 0
diff = diff_tmp
else:
count += 1
# print('diff', diff)
# return graph
def bias_absorption(graph, relations, bottoms, N=3):
print("Absorbing bias")
def is_relu_found(layer_second, layer_first, graph, bottoms):
idx = layer_second
while idx != layer_first:
assert len(bottoms[idx]) == 1, 'graph in equalization relations should be 1-to-1 input-output'
if type(graph[bottoms[idx][0]]) == torch.nn.ReLU:
return True
idx = bottoms[idx][0]
return False
for rr in relations:
layer_first, layer_second, bn_idx = rr.get_idxs()
if not is_relu_found(layer_second, layer_first, graph, bottoms):
continue
bn_weight = getattr(graph[bn_idx], 'fake_weight').detach().clone()
bn_bias = getattr(graph[bn_idx], 'fake_bias').detach().clone()
weight = graph[layer_second].weight.detach().clone()
size = weight.shape
num_group = graph[layer_first].weight.size(0) // graph[layer_second].weight.size(1)
step_size_o = size[0] // num_group
step_size_i = graph[layer_first].weight.size(0) // num_group
c = (bn_bias - N * bn_weight)
c.clamp_(0)
# S = rr.get_scale_vec()
# c[S<=1] = 0
weight = weight.view(size[0], size[1], -1)
wc = torch.zeros(weight.size(0))
for g in range(num_group):
wc[g*step_size_o:(g+1)*step_size_o] = torch.matmul(torch.sum(weight[g*step_size_o:(g+1)*step_size_o], -1), c[g*step_size_i:(g+1)*step_size_i])
for idx in [layer_first, layer_second]:
if graph[idx].bias is None:
graph[idx].bias = nn.Parameter(data=torch.zeros((graph[idx].weight.size(0)), dtype=torch.float32), requires_grad=False)
graph[layer_first].bias.data.add_(-c)
graph[bn_idx].fake_bias.data.add_(-c)
graph[layer_second].bias.data.add_(wc)
def clip_weight(graph, range_clip=[-15, 15], targ_type=[nn.Conv2d, nn.Linear]):
for idx in graph:
if type(graph[idx]) in targ_type:
graph[idx].weight.data.copy_(graph[idx].weight.data.clamp(range_clip[0], range_clip[1]))
def bias_correction(graph, bottoms, targ_type, bits_weight=8, bn_type=torch.nn.BatchNorm2d, signed=False):
"""
Perform bias correction.
Expectation of input activations will be summed for elementwise addition, concate for torch.cat
"""
from utils.layer_transform import find_prev_bn
from scipy.stats import norm
print("Start bias correction")
# standard_normal = lambda x: torch.exp(-(x * x) / 2) / torch.sqrt(torch.tensor(2 * np.pi))
standard_normal = lambda x: torch.from_numpy(norm(0, 1).pdf(x)).float()
standard_cdf = lambda x: torch.from_numpy(norm.cdf(x)).float()
calculate_mean = lambda weight, bias: weight * standard_normal(-bias/weight) + bias * (1 - standard_cdf(-bias/weight))
# calculate_var = lambda weight, bias, mean: (1-standard_cdf(-bias/weight)) * (bias*bias + weight*weight + mean * mean - 2 * mean * bias) +\
# weight * (bias - 2 * mean) * (standard_normal(-bias/weight)) + \
# mean * mean * standard_cdf(-bias/weight)
bn_module = {}
bn_out_shape = {}
relu_attached = {}
bias_prev = None
with torch.no_grad():
for idx_layer in graph:
bot = bottoms[idx_layer]
if bot is None or bot[0] == 'Data':
continue
if type(graph[idx_layer]) == bn_type:
bn_module[idx_layer] = graph[idx_layer]
bn_out_shape[idx_layer] = graph[idx_layer]
relu_attached[idx_layer] = False
if bias_prev is not None:
graph[idx_layer].fake_bias.add_(bias_prev)
bias_prev = None
continue
if type(graph[idx_layer]) == torch.nn.ReLU:
if bot[0] in bn_module:
relu_attached[bot[0]] = True
if type(graph[idx_layer]) in targ_type: # 1 to many or 1 to 1
bn_list, relu_attach_list, connect_type_list, _ = find_prev_bn(bn_module, relu_attached, graph, bottoms, bot[:])
weight = getattr(graph[idx_layer], 'weight').detach().clone()
# eps = _quantize_error(weight.cuda(), 8, reduction=None).cpu() ## different results on gpu or cpu, move to gpu
eps = _quantize_error(weight, 8, reduction=None, signed=signed)
eps = torch.sum(eps.view(weight.size(0), weight.size(1), -1), -1)
bn_branch = {}
for idx, tmp in enumerate(bn_list):
_, bid = tmp
if bid[0] in bn_branch:
bn_branch[bid[0]].append((tmp, relu_attach_list[idx], connect_type_list[idx]))
else:
bn_branch[bid[0]] = [(tmp, relu_attach_list[idx], connect_type_list[idx])]
bn_res = {}
for key in bn_branch:
tmp_list = sorted(bn_branch[key], key=lambda x: len(x[0][1]), reverse=True)
node_cur, use_relu, connect_type = tmp_list[0]
layer_cur, bid = node_cur
depth = len(bid)
tmp_list.pop(0)
bn_bias = layer_cur.fake_bias.detach().clone()
bn_weight = layer_cur.fake_weight.detach().clone()
if use_relu:
expect = calculate_mean(bn_weight, bn_bias)
expect[expect < 0] = 0
else:
expect = bn_bias
while len(tmp_list) > 0:
idx_bound = 0
while idx_bound < len(tmp_list) and len(tmp_list[idx_bound][0][1]) == depth:
idx_bound += 1
if idx_bound == 0 and len(tmp_list) > 0:
# cut depth, add node_cur back
depth = len(tmp_list[idx_bound][0][1])
else:
for idx in range(idx_bound):
node_tmp, use_relu_tmp, connect_type = tmp_list[idx]
bn_bias = node_tmp[0].fake_bias.detach().clone()
bn_weight = node_tmp[0].fake_weight.detach().clone()
if use_relu_tmp:
expect_tmp = calculate_mean(bn_weight, bn_bias)
expect_tmp[expect_tmp < 0] = 0
else:
expect_tmp = bn_bias
if 'cat' == connect_type:
expect = torch.cat([expect, expect_tmp], 0)
else:
expect += expect_tmp
tmp_list = tmp_list[idx_bound:]
# expect /= (idx_bound + 1)
bn_res[key] = (connect_type, expect)
assert len(bn_res) == 1, "Error while calculating expectation for bias correction"
if 'cat' == list(bn_res.values())[0][0]:
expect = torch.cat(list(zip(list(bn_res.values())[0]))[1], 0)
# group operation
num_group = expect.size(0) // eps.size(1)
step_size_o = eps.size(0) // num_group
step_size_i = expect.size(0) // num_group
bias = torch.zeros(eps.size(0))
for g in range(num_group):
bias[g*step_size_o:(g+1)*step_size_o] = torch.matmul(eps[g*step_size_o:(g+1)*step_size_o], expect[g*step_size_i:(g+1)*step_size_i])
# bias = torch.matmul(eps, expect)
if graph[idx_layer].bias is None:
graph[idx_layer].bias = nn.Parameter(data=torch.zeros((graph[idx_layer].weight.size(0)), dtype=torch.float32), requires_grad=False)
graph[idx_layer].bias.add_(-bias)
bias_prev = -bias