-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
63 lines (51 loc) · 2.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 25 18:43:44 2021
@author: James
"""
import torch
import torch.nn as nn
from layers import Encoder,Decoder,EmbeddingsWithPositionalEncoding,Generator
class Transformer(nn.Module):
"""
## Combined Encoder-Decoder
"""
def __init__(self,
d_model: int,
d_ff:int,
heads:int,
n_vocab: int,
max_len:int=5000,
bias:bool=True,
is_gated: bool = False,
bias_gate:bool=True,
activation=nn.ReLU(),
dropout_prob: float=0.1,
n_layers: int=6
):
super().__init__()
self.encoder = Encoder(d_model,d_ff,heads,bias,is_gated,bias_gate,
activation,dropout_prob,n_layers)
self.decoder = Decoder(d_model,d_ff,heads,bias,is_gated,bias_gate,
activation,dropout_prob,n_layers)
self.src_embed = EmbeddingsWithPositionalEncoding(d_model,n_vocab,max_len)
self.tgt_embed = EmbeddingsWithPositionalEncoding(d_model,n_vocab,max_len)
self.generator = Generator(n_vocab,d_model)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self,
src: torch.Tensor,
tgt: torch.Tensor,
src_mask: torch.Tensor,
tgt_mask: torch.Tensor):
# Run the source through encoder
enc = self.encode(src, src_mask)
# Run encodings and targets through decoder
return self.decode(enc, src_mask, tgt, tgt_mask)
def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)