-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcspline.f90
302 lines (265 loc) · 7.28 KB
/
cspline.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
MODULE mcspline
CONTAINS
SUBROUTINE cspline(x, xony, score, y, n, r, T, JJ, lam)
IMPLICIT NONE
! Input arguments
INTEGER, INTENT(in) :: n
REAL*8, INTENT(in), DIMENSION(N) :: y
!f2py optional , depend(sal) :: n=len(y)
!> lambda parameter
REAL*8, INTENT(in) :: lam
REAL*8, INTENT(in) :: T
INTEGER, INTENT(in) :: JJ
INTEGER, INTENT(in) :: r
! Output arguments
REAL*8, INTENT(out) :: score
REAL*8, INTENT(out) :: x(r*n+r-1)
REAL*8, INTENT(out) :: xONy(n)
! REAL*8, INTENT(out) :: x(25)
! Local variables
REAL*8, DIMENSION(:), ALLOCATABLE :: c, e, f, w, z
REAL*8 :: a0, a1, d
COMPLEX (kind=8) :: a2, x1, x2, alpha, beta, atmp
REAL*8 :: fac1, fac2
REAL*8 :: elim, flim, glim, hlim, qlim
REAL*8 :: g1, g2, h
REAL*8 :: j1, j2, j3, j4
REAL*8 :: lamc, lamr, mu, q, sq
REAL*8 :: Tcu
REAL*8 :: tmp1, tmp2, tmp3, tmp4
REAL*8 :: tr, tr1, tr2, tr3
REAL*8 :: v
INTEGER :: ir, nc
INTEGER :: r2, rn, rsq
INTEGER :: i, j, k
INTEGER :: NN, m
nc = CEILING(REAL(n)/REAL(2.))
Tcu = T**3
rn = r*n
! Initialize output vector 'x' with zero for all 'm' members
m = r*n+r-1
x = 0.0d0
! print *, '2) Allocate c, w, z'
ALLOCATE(c(n)) ; c = 0.0d0
ALLOCATE(w(n-2)) ; w = 0.0d0
ALLOCATE(z(n)) ; z = 0.0d0
DO j=1,n-2
w(j) = y(j)-2*y(j+1)+y(j+2)
END DO
! print *, '3) determine lamr, a0, a1, a2, x1, x2'
lamr = lam*Tcu
a0 = 6.d0 + lamr*2.d0/3.d0
a1 = 4.d0 - lamr/6.d0
atmp = a1**2 - 4.d0*(a0-2.d0)
a2 = SQRT(atmp)
x1 = (a1 + a2) / 2.d0
x2 = -(a2 - a1) / 2.d0
! print *,' a1**2 - 4.d0*(a0-2.d0) = ', atmp
! print *, 'a0, a1, a2 =', a0, a1, a2
! print *, 'x1, x2 =', x1, x2
! print *, '4) determine alpha, beta'
IF (lamr > 24.d0) THEN
alpha = 0.5d0*(x1 + SQRT(x1**2-4.d0))
beta = 0.5d0*(x2 + SQRT(x2**2-4.d0))
ELSE IF (lamr < 24.d0) THEN
alpha = 0.5d0*(x1 - SQRT(x1**2-4.d0))
beta = 0.5d0*(x2 - SQRT(x2**2-4))
ELSE
alpha = 0.5d0*(x1 - SQRT(x1**2-4.d0))
beta = 0.5d0*(x2 + SQRT(x2**2-4.d0))
END IF
! print *, 'alpha, beta = ', alpha, beta
! IF (JJ > LOG10(alpha*beta) - (nc-1)*2*LOG10(ABS(alpha))) THEN
IF (JJ > LOG10(DBLE(alpha*beta)) - (nc-1)*2*LOG10(ABS(alpha))) THEN
!print *, '5) JJ if block: GREATER THAN'
!Use untruncated algorithm since NN > nc-2
!Factor coefficient matrix, solve triangular systems, find trace
! IF (ALLOCATED(e)) DEALLOCATE(e)
ALLOCATE(e(n-2))
e = 0.0d0
! IF (ALLOCATED(f)) DEALLOCATE(f)
ALLOCATE(f(n-2))
f = 0.0d0
d = a0
f(1) = 1.d0 / d
c(2) = f(1)*w(1)
mu = a1
e(1) = mu*f(1)
d = a0-mu*e(1)
f(2) = 1.d0 / d
c(3) = f(2)*(w(2)+mu*c(2))
mu = a1 - e(1)
e(2) = mu*f(2)
DO j=3,n-2
d = a0-mu*e(j-1)-f(j-2)
f(j) = 1.d0 / d
c(j+1) = f(j)*(w(j)+mu*c(j)-c(j-1))
mu = a1 - e(j-1)
e(j) = mu * f(j)
END DO
c(n-2) = c(n-2)+e(n-3)*c(n-1)
DO j=n-4,1,-1
c(j+1) = c(j+1) + e(j)*c(j+2) - f(j)*c(j+3)
END DO
g2 = f(n-2)
tr1 = g2
h = e(n-3)*g2
tr2 = h
g1 = f(n-3) + e(n-3)*h
tr1 = tr1 + g1
tr3=0
DO k=n-4,n-nc,-1
q = e(k)*h - f(k)*g2
tr3 = tr3 + q
h = e(k)*g1 - f(k)*h
tr2 = tr2 + h
g2 = g1
g1 = f(k)*(1-q) + e(k)*h
tr1 = tr1 + g1
END DO
q = e(n-nc-1)*h - f(n-nc-1)*g2
tr3 = tr3 + q
h = e(n-nc-1)*g1 - f(n-nc-1)*h
tr2 = tr2 + h
tr1 = 6.d0*(2.d0*tr1 - DBLE(MOD(n,2))*g1)
tr2 = -8.d0*(2.d0*tr2 - (1 + DBLE(MOD(n,2)) )*h)
tr3 = 2.d0*(2.d0*tr3 - DBLE(MOD(n,2))*q)
tr = (tr1+tr2+tr3)/DBLE(n)
ELSE
!print *, '5) JJ if block: LESS than'
!Use truncated algorithm since NN < nc-1
!Factor coefficient matrix, solve triangular systems, find trace
flim = alpha*beta
elim = alpha + beta
glim = flim*(1+flim) / ((1 - flim)*((1.d0+flim)**2 - elim**2))
hlim = elim*glim/(1.d0+flim)
qlim = elim*hlim - flim*glim
NN = CEILING((LOG10(flim) - JJ) / (2*LOG10(ABS(alpha))))
!print *, '6) Allocate e, f'
IF (ALLOCATED(e)) DEALLOCATE(e)
ALLOCATE(e(NN))
e = 0.0d0
IF (ALLOCATED(f)) DEALLOCATE(f)
ALLOCATE(f(NN))
f = 0.0d0
!print *, '7) produce tr%, g%, etc.'
d = a0
f(1) = 1.d0 / d
c(2) = f(1)*w(1)
mu = a1
e(1) = mu*f(1)
d = a0 - mu*e(1)
f(2) = 1.d0 / d
c(3) = f(2)*(w(2) + mu*c(2))
mu = a1 - e(1)
e(2) = mu*f(2)
g2 = flim
tr1 = g2
h = elim*g2
tr2 = h
g1 = flim+elim*h
tr1 = tr1+g1
tr3 = 0.d0
!print *, '8) Loop to produce tr1 etc'
DO j=3,NN
d = a0 - mu*e(j-1) - f(j-2)
f(j) = 1.d0 / d
c(j+1) = f(j)*(w(j) + mu*c(j) - c(j-1))
mu = a1 - e(j-1)
e(j) = mu*f(j)
q = elim*h - flim*g2
tr3 = tr3 + q
h = elim*g1 - flim*h
tr2 = tr2+h
g2 = g1
g1 = flim*(1-q) + elim*h
tr1 = tr1 + g1
END DO
!print *, '9) Compute tr1, tr2, tr3, tr, mu'
tr1 = tr1+(nc-NN-1)*glim
tr2 = tr2+(nc-NN)*hlim
tr3 = tr3+(nc-NN)*qlim
tr1 = 6.d0*(2.d0*tr1 - DBLE(MOD(n,2))*glim)
tr2 = -8.d0*(2.d0*tr2 - (1.d0 + DBLE(MOD(n,2)) )*hlim)
tr3 = 2.d0*(2.d0*tr3 - DBLE(MOD(n,2))*qlim)
tr = (tr1 + tr2 + tr3)/DBLE(n)
mu = a1 - elim
!print *, '10) Compute c(j+1): first'
!print *, 'c =', c
!print *, 'NN, n =', NN, n
!print *, 'flim, mu =', flim, mu
DO j=NN+1,n-2
c(j+1) = flim*(w(j) + mu*c(j)-c(j-1))
END DO
!print *, c
!print *, '10) Compute c(n-2)'
c(n-2) = c(n-2) + elim*c(n-1)
!print *, '11) Compute c(j)'
DO j=n-3,NN+2,-1
c(j) = c(j) + elim*c(j+1) - flim*c(j+2)
END DO
!print *, '12) Compute c(j+1) : second'
DO j=NN,1,-1
c(j+1) = c(j+1) + e(j)*c(j+2) - f(j)*c(j+3)
END DO
END IF
! print *, '13) Compute score'
!Compute GCV score
z(1) = c(2)
z(2) = c(3)-2*c(2)
DO j=3,n-2
z(j) = c(j-1)-2*c(j)+c(j+1)
END DO
z(n-1) = c(n-2)-2*c(n-1)
z(n) = c(n-1)
!m2f: sq=(z*z')/n
! sq = (z*TRANSPOSE(z))/n
! sq = MatMul(z,TRANSPOSE(z)) / DBLE(n)
! Compute the dot product of the vector z
sq = sum (z * z)
score = sq / tr**2
! print *, 'Funny x(r:rn:r) operation'
!Compute estimates
!x(r:r:rn)=y-z
x(r:rn:r) = y-z
IF (r < 8) THEN
fac1 = x(2*r) - x(r) - lamr*c(2)/6.d0
fac2 = x(rn) - x(rn-r) + lamr*c(n-1)/6.d0
DO j=1,r-1
j1 = DBLE(j)/DBLE(r)
j2 = 1.d0 - j1
v = lamr*j1*j2 / 6.d0
j3 = v*(1.d0 + j1)
j4 = v*(2.d0 - j1)
DO i=1,n-1
ir = i*r
x(ir+j) = j2*x(ir) + j1*x(ir+r) - j3*c(i+1) - j4*c(i)
END DO
x(j) = x(r) - j2*fac1
x(rn+j) = x(rn) + j1*fac2
END DO
ELSE
lamc = lamr/(6*r**3)
r2 = 2*r
rsq = r**2
DO i=1,n-1
ir = i*r
tmp1 = x(ir) / r
tmp2 = x(ir+r) / r
tmp3 = lamc*c(i+1)
tmp4 = lamc*c(i)
DO j=1,r-1
x(ir+j) = DBLE(r-j)*tmp1 + DBLE(j)*tmp2 - DBLE(j)*DBLE(rsq-j*j)*tmp3 &
- DBLE(j)*DBLE(r-j)*DBLE(r2-j)*tmp4
END DO
END DO
tmp1 = x(r) - x(r+1)
tmp2 = x(rn) - x(rn-1)
DO j = 1,r-1
x(j) = x(r) + (r-j)*tmp1
x(rn+j) = x(rn) + j*tmp2
END DO
END IF
xony = x(r:m:r)
END SUBROUTINE cspline
END MODULE mcspline