Skip to content

Latest commit

 

History

History
60 lines (51 loc) · 2.2 KB

README.md

File metadata and controls

60 lines (51 loc) · 2.2 KB

Encoded-IF

Anomaly Detection Enhancement Method Using Interpretable Unsupervised Machine Learning in Industrial Information Systems at Multivariate Time Series Environment

image
https://doi.org/10.5302/J.ICROS.2024.23.0200

Journal of Institute of Control, Robotics and Systems (2024) 30(3)
ISSN:1976-5622
eISSN:2233-4335

Usage

SWaT data processing

  1. Run unzip ./SWaT/data/SWaT.zip to unzip the datasets
    or
  2. Run cd ./SWaT/utils
    Run python gdrivedl.py https://drive.google.com/open?id=1rVJ5ry5GG-ZZi5yI4x9lICB8VhErXwCw ./SWaT
    Run python gdrivedl.py https://drive.google.com/open?id=1iDYc0OEmidN712fquOBRFjln90SbpaE7 ./SWaT
    Run mkdir -p ./../data
    Run mv ./SWaT ./../data/SWaT

Traing & Evaluation

SMD datasets

SMD
machine-1-1, machine-1-2, machine-1-3, machine-1-4, machine-1-5, machine-1-6, machine-1-7, machine-1-8,
machine-2-1, machine-2-2, machine-2-3, machine-2-4, machine-2-5, machine-2-6, machine-2-7, machine-2-8, machine-2-9,
machine-3-1, machine-3-2, machine-3-3, machine-3-4, machine-3-5, machine-3-6, machine-3-7, machine-3-8, machine-3-9,
machine-3-10, machine-3-11

to run of SMAP, MSL and SMD datasets

  1. Run main.ipynb by jupyter
    or
  2. Run main.py by python
# available models : IF, USAD, Encoded-IF
python main.py --dataset SMAP 
python main.py --dataset MSL 
python main.py --dataset SMD

# available sub-SMD datasets
# python main.py --dataset machine-{a}-{b} --model Encoded-IF --max_epoch 0
# a = {1, 2, 3}
# b = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

to run of SWaT datasets

  1. Run /SWaT/IsolationForest.ipynb by jupyter
  2. Run /SWaT/AutoEncoder.ipynb by jupyter
  3. Run /SWaT/USAD.ipynb by jupyter
  4. Run /SWaT/Encoded-IF.ipynb by jupyter

Data description

Dataset Train Test Dimensions
SWaT 496,800 449,919 51
SMAP 135,183 427,617 25
MSL 58,317 73,729 55
SMD 708,405 708,420 28*28