Skip to content

Commit

Permalink
add back limits
Browse files Browse the repository at this point in the history
  • Loading branch information
Neutrino155 committed Nov 9, 2023
1 parent ed2ca35 commit 0ba37cf
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions src/ResponseFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -242,15 +242,15 @@ function inverse_Hellwarth_mobility(v, w, α, ω, β)
b = R * ω * β / sinh* β * v / 2) # Feynman1962 version; page 1010, Eqn (47b)
a = sqrt((ω * β / 2)^2 + R * ω * β * coth* β * v / 2))
k(u, a, b, v) = (u^2 + a^2 - b * cos(v * u) + eps(Float64))^(-3 / 2) * cos(u) # integrand in (2)
K = quadgk(u -> k(u, a, b, v), 0, Inf)[1] # numerical quadrature integration of (2)
K = quadgk(u -> k(u, a, b, v), 0, 1e5)[1] # numerical quadrature integration of (2)

# Right-hand-side of Eqn 1 in Hellwarth 1999 // Eqn (4) in Baggio1997
RHS = α / (3 * sqrt(π)) ** β)^(5 / 2) / sinh* β / 2) * (v^3 / w^3) * K
μ = RHS

# Hellwarth1999/Biaggio1997, b=0 version... 'Setting b=0 makes less than 0.1% error'
# So let's test this:
K_0 = quadgk(u -> k(u, a, 0, v), 0, Inf)[1] # Inserted b=0 into k(u, a, b, v).
K_0 = quadgk(u -> k(u, a, 0, v), 0, 1e5)[1] # Inserted b=0 into k(u, a, b, v).
RHS_0 = α / (3 * sqrt(π)) ** β)^(5 / 2) / sinh* β / 2) * (v^3 / w^3) * K_0
μ_0 = RHS_0

Expand Down

0 comments on commit 0ba37cf

Please sign in to comment.