-
Notifications
You must be signed in to change notification settings - Fork 2
/
facerecognition.py
125 lines (94 loc) · 3.51 KB
/
facerecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# AUTHOR - JASHANDEEP SINGH #
# Recognise Faces using some classification algorithm - like Logistic, KNN, SVM etc.
# 1. load the training data (numpy arrays of all the persons)
# x- values are stored in the numpy arrays
# y-values we need to assign for each person
# 2. Read a video stream using opencv
# 3. extract faces out of it
# 4. use knn to find the prediction of face (int)
# 5. map the predicted id to name of the user
# 6. Display the predictions on the screen - bounding box and name
import cv2
import numpy as np
import os
########## KNN CODE ############
def distance(v1, v2):
# Eucledian
return np.sqrt(((v1-v2)**2).sum())
def knn(train, test, k=7):
dist = []
for i in range(train.shape[0]):
# Get the vector and label
ix = train[i, :-1]
iy = train[i, -1]
# Compute the distance from test point
d = distance(test, ix)
dist.append([d, iy])
# Sort based on distance and get top k
dk = sorted(dist, key=lambda x: x[0])[:k]
# Retrieve only the labels
labels = np.array(dk)[:, -1]
# Get frequencies of each label
output = np.unique(labels, return_counts=True)
# Find max frequency and corresponding label
index = np.argmax(output[1])
return output[0][index]
################################
#Init Camera
cap = cv2.VideoCapture(0)
# Face Detection
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
skip = 0
dataset_path = './data/'
face_data = []
labels = []
class_id = 0 # Labels for the given file
names = {} #Mapping btw id - name
# Data Preparation
for fx in os.listdir(dataset_path):
if fx.endswith('.npy'):
#Create a mapping btw class_id and name
names[class_id] = fx[:-4]
print("Loaded "+fx)
data_item = np.load(dataset_path+fx)
face_data.append(data_item)
#Create Labels for the class
target = class_id*np.ones((data_item.shape[0],))
class_id += 1
labels.append(target)
face_dataset = np.concatenate(face_data,axis=0)
face_labels = np.concatenate(labels,axis=0).reshape((-1,1))
print(face_dataset.shape)
print(face_labels.shape)
trainset = np.concatenate((face_dataset,face_labels),axis=1)
print(trainset.shape)
# Testing
while True:
ret,frame = cap.read()
if ret == False:
continue
# detectMultiScale = it return (x = x_coardinate,y = y_coardinate,w = width,h = height) tuple
# detectMultiScale(image returned by read func,scaling factor,number of neighbour)
faces = face_cascade.detectMultiScale(frame,1.3,5)
if(len(faces)==0):
continue
for face in faces:
x,y,w,h = face
#Get the face ROI
#Extract (Crop out the required face) : Region of Interest
offset = 10
face_section = frame[y-offset:y+h+offset,x-offset:x+w+offset]
face_section = cv2.resize(face_section,(100,100))
#Predicted Label (out)
out = knn(trainset,face_section.flatten())
#Display on the screen the name and rectangle around it
pred_name = names[int(out)]
cv2.putText(frame,pred_name,(x,y-10),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),2,cv2.LINE_AA)
#draw rectangle over the face parameters of function rectangle(frame,cordinates,opposite_cordinates,colour,thickness of line)
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2)
cv2.imshow("Faces",frame)
key = cv2.waitKey(1) & 0xFF
if key==ord('q'):
break
cap.release()
cv2.destroyAllWindows()