-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprng.c
257 lines (232 loc) · 6.31 KB
/
prng.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <stdint.h>
#include <math.h>
#include <errno.h>
#include <assert.h>
#include <Random123/threefry.h>
#define R123_USE_U01_DOUBLE 1
#include <Random123/u01fixedpt.h>
#include "globals.h"
#include "prng.h"
static threefry4x32_key_t key = {{0xdeadbeef, 0xdecea5ed,
0x0badcafe, 0x5ca1ab1e}};
static uint64_t scramble0, scramble1;
static inline uint64_t bitreverse(uint64_t);
static inline threefry4x32_ctr_t ctr1 (int64_t);
static inline threefry4x32_ctr_t ctr2 (int64_t, int64_t);
static inline float fprng (int64_t, int64_t);
static inline double dprng (int64_t, int64_t);
void
init_prng (void)
{
threefry4x32_ctr_t ctr, out;
/* Grab any changed seeds for experimental runs. */
errno = 0;
#define GET_SEED(k) \
if (getenv ("SEED" #k)) { \
long t; \
t = strtoul (getenv ("SEED" #k), NULL, 10); \
if (t == ULONG_MAX) { \
if (errno) { \
perror ("Error setting seed" #k ":"); \
abort (); \
} \
} \
key.v[k] = t; \
}
GET_SEED(0);
GET_SEED(1);
GET_SEED(2);
GET_SEED(3);
/* Initialize scrambling. */
ctr.v[0] = ctr.v[1] = ctr.v[2] = ctr.v[3] = -1;
out = threefry4x32 (ctr, key);
scramble0 = ((uint64_t)out.v[0]) << 32 | (uint64_t)out.v[1];
scramble1 = ((uint64_t)out.v[2]) << 32 | (uint64_t)out.v[3];
}
/* Apply a permutation to scramble vertex numbers; a randomly generated
* permutation is not used because applying it at scale is too expensive. */
int64_t
scramble (int64_t v0)
{
uint64_t v = (uint64_t)v0;
v += scramble0 + scramble1;
v *= (scramble0 | UINT64_C(0x4519840211493211));
v = (bitreverse(v) >> (64 - SCALE));
assert ((v >> SCALE) == 0);
v *= (scramble1 | UINT64_C(0x3050852102C843A5));
v = (bitreverse(v) >> (64 - SCALE));
assert ((v >> SCALE) == 0);
return (int64_t)v;
}
uint8_t
random_weight (int64_t idx)
{
uint8_t out;
float outf;
outf = ceilf (MAXWEIGHT * fprng (idx, 0));
out = (uint8_t) outf;
if (!out) fprintf (stderr, "wtf %d %g %d\n", MAXWEIGHT, (double)outf, (int)out);
assert (out > 0);
return out;
}
void
random_edgevals (float * v, int64_t idx)
{
/* v is SCALE x 2 */
for (int scl = 0; scl < SCALE; scl += 2) {
threefry4x32_ctr_t outc;
outc = threefry4x32 (ctr2 (idx, 1+scl/2), key);
v[scl] = u01fixedpt_open_open_32_24 (outc.v[0]);
v[SCALE + scl] = u01fixedpt_open_open_32_24 (outc.v[1]);
if (scl < SCALE-1) {
v[scl+1] = u01fixedpt_open_open_32_24 (outc.v[2]);
v[SCALE + scl+1] = u01fixedpt_open_open_32_24 (outc.v[3]);
}
}
}
void
sample_roots (int64_t * root, int64_t nroot, int64_t KEY)
{
/* Method A in Jeffrey Scott Vitter, "An Efficient Algorithm for
Sequential Random Sampling," ACM Transactions on Mathematical
Software, 13(1), March 1987, 58-67. */
double n = NV;
int64_t top = NV - nroot;
int64_t cur = -1;
int64_t S;
double r;
for (int m = 0; m < nroot; ++m) root[m] = -1;
for (int m = 0; m < nroot-1; ++m) {
double quot;
r = dprng (KEY, m);
S = 0;
quot = top / n;
while (quot > r) {
S += 1;
top -= 1;
n -= 1;
quot *= top / n;
}
cur += S+1;
root[m] = cur;
n -= 1;
}
r = dprng (KEY, nroot-1);
S = floor (n * r);
cur += S+1;
root[nroot-1] = cur;
#if !defined (NDEBUG)
for (int m = 0; m < nroot; ++m) {
assert (root[m] >= 0 && root[m] < NV);
for (int m2 = m+1; m2 < nroot; ++m2)
assert (root[m2] != root[m]);
}
#endif
}
int32_t
prng_check (void)
{
threefry4x32_ctr_t out;
out = threefry4x32 (ctr2 (SCALE, EF), key);
return out.v[0];
}
/* Helper routines. */
threefry4x32_ctr_t
ctr1 (int64_t k)
{
threefry4x32_ctr_t ctr;
ctr.v[0] = ((uint64_t)k) >> 32;
ctr.v[1] = ((uint64_t)k) & 0xFFFFFFFFul;
ctr.v[2] = ctr.v[3] = 0;
return ctr;
}
threefry4x32_ctr_t
ctr2 (int64_t k1, int64_t k2)
{
threefry4x32_ctr_t ctr;
ctr.v[0] = ((uint64_t)k1) >> 32;
ctr.v[1] = ((uint64_t)k1) & 0xFFFFFFFFul;
ctr.v[2] = ((uint64_t)k2) >> 32;
ctr.v[3] = ((uint64_t)k2) & 0xFFFFFFFFul;
return ctr;
}
float
fprng (int64_t v1, int64_t v2)
{
threefry4x32_ctr_t outc;
float out;
outc = threefry4x32 (ctr2 (v1, v2), key);
out = u01fixedpt_open_open_32_24 (outc.v[0]);
assert (out > 0);
return out;
}
double
dprng (int64_t v1, int64_t v2)
{
union {
threefry4x32_ctr_t outc;
int64_t v[2];
} u;
u.outc = threefry4x32 (ctr2 (v1, v2), key);
return u01fixedpt_closed_open_64_53 (u.v[0]);
}
/* Reverse bits in a number; this should be optimized for performance
(including using bit- or byte-reverse intrinsics if your platform
has them). */
uint64_t
bitreverse(uint64_t x) {
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
#define USE_GCC_BYTESWAP /* __builtin_bswap* are in 4.3 but not 4.2 */
#endif
#ifdef FAST_64BIT_ARITHMETIC
/* 64-bit code */
#ifdef USE_GCC_BYTESWAP
x = __builtin_bswap64(x);
#else
x = (x >> 32) | (x << 32);
x = ((x >> 16) & UINT64_C(0x0000FFFF0000FFFF)) |
((x & UINT64_C(0x0000FFFF0000FFFF)) << 16);
x = ((x >> 8) & UINT64_C(0x00FF00FF00FF00FF)) |
((x & UINT64_C(0x00FF00FF00FF00FF)) << 8);
#endif
x = ((x >> 4) & UINT64_C(0x0F0F0F0F0F0F0F0F)) |
((x & UINT64_C(0x0F0F0F0F0F0F0F0F)) << 4);
x = ((x >> 2) & UINT64_C(0x3333333333333333)) |
((x & UINT64_C(0x3333333333333333)) << 2);
x = ((x >> 1) & UINT64_C(0x5555555555555555)) |
((x & UINT64_C(0x5555555555555555)) << 1);
return x;
#else
/* 32-bit code */
uint32_t h = (uint32_t)(x >> 32);
uint32_t l = (uint32_t)(x & UINT32_MAX);
#ifdef USE_GCC_BYTESWAP
h = __builtin_bswap32(h);
l = __builtin_bswap32(l);
\
#else
h = (h >> 16) | (h << 16);
l = (l >> 16) | (l << 16);
h = ((h >> 8) & UINT32_C(0x00FF00FF)) |
((h & UINT32_C(0x00FF00FF)) << 8);
l = ((l >> 8) & UINT32_C(0x00FF00FF)) |
((l & UINT32_C(0x00FF00FF)) << 8);
#endif
h = ((h >> 4) & UINT32_C(0x0F0F0F0F)) |
((h & UINT32_C(0x0F0F0F0F)) << 4);
l = ((l >> 4) & UINT32_C(0x0F0F0F0F)) |
((l & UINT32_C(0x0F0F0F0F)) << 4);
h = ((h >> 2) & UINT32_C(0x33333333)) |
((h & UINT32_C(0x33333333)) << 2);
l = ((l >> 2) & UINT32_C(0x33333333)) |
((l & UINT32_C(0x33333333)) << 2);
h = ((h >> 1) & UINT32_C(0x55555555)) |
((h & UINT32_C(0x55555555)) << 1);
l = ((l >> 1) & UINT32_C(0x55555555)) |
((l & UINT32_C(0x55555555)) << 1);
return ((uint64_t)l << 32) | h; /* Swap halves */
#endif
}