-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsupervised_finetuning_full_weight.py
232 lines (191 loc) · 8.04 KB
/
supervised_finetuning_full_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import argparse
from tqdm import tqdm
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
LlamaTokenizer,
TrainingArguments,
logging,
set_seed,
Trainer,
)
from trl import SFTTrainer
from trl.trainer import ConstantLengthDataset
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str, default="")
parser.add_argument("--dataset_name", type=str, default="./data/alpaca_gpt4_data.json")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--size_valid_set", type=int, default=4000)
parser.add_argument("--streaming", action="store_true", default=False)
parser.add_argument("--shuffle_buffer", type=int, default=5000)
parser.add_argument("--seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=10000)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--eos_token_id", type=int, default=49152)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler_type", type=str, default="linear")
parser.add_argument("--num_warmup_steps", type=int, default=100)
parser.add_argument("--weight_decay", type=float, default=0.05)
parser.add_argument("--warmup_ratio", type=float, default=0.)
parser.add_argument("--deepspeed", type=str, default=None)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--no_bf16", action="store_false", default=True)
parser.add_argument("--no_gradient_checkpointing", action="store_false", default=True)
parser.add_argument("--seed", type=int, default=1103)
parser.add_argument("--num_workers", type=int, default=None)
parser.add_argument("--output_dir", type=str, default="./checkpoints/supervised_llama/")
parser.add_argument("--log_freq", default=1, type=int)
parser.add_argument("--eval_freq", default=1000, type=int)
parser.add_argument("--save_freq", default=1000, type=int)
parser.add_argument("--save_total_limit", default=3, type=int)
parser.add_argument("--run_name", default="llama-supervised-finetuned", type=str)
return parser.parse_args()
def safe_save_model_for_hf_trainer(trainer: Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def prepare_sample_text(data_point):
"""Prepare the text from a sample of the dataset."""
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
def create_datasets(tokenizer, args):
data_path = args.dataset_name
data_kwargs = {
"split": args.split,
"num_proc": args.num_workers if not args.streaming else None,
"streaming": args.streaming,
}
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
dataset = load_dataset("json", data_files=data_path, **data_kwargs)
else:
dataset = load_dataset(data_path, **data_kwargs)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
else:
dataset = dataset.train_test_split(test_size=0.1, seed=args.seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")
chars_per_token = chars_token_ratio(train_data, tokenizer)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
formatting_func=prepare_sample_text,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
formatting_func=prepare_sample_text,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
return train_dataset, valid_dataset
def run_training(args, train_data, val_data, tokenizer=None):
print("Loading the model")
train_data.start_iteration = 0
print("Starting main loop")
training_args = TrainingArguments(
output_dir=args.output_dir,
dataloader_drop_last=True,
evaluation_strategy="steps",
max_steps=args.max_steps,
eval_steps=args.eval_freq,
save_steps=args.save_freq,
logging_steps=args.log_freq,
save_total_limit=args.save_total_limit,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.no_gradient_checkpointing,
fp16=args.fp16,
bf16=args.no_bf16,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
deepspeed=args.deepspeed,
run_name=args.run_name,
report_to="wandb",
ddp_find_unused_parameters=False if int(os.environ.get("WORLD_SIZE", 1)) != 1 else None,
)
model = AutoModelForCausalLM.from_pretrained(
args.base_model,
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data,
packing=True,
)
print("Training...")
trainer.train()
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=args.output_dir)
def main(args):
if "decapoda" in args.base_model.lower():
tokenizer = LlamaTokenizer.from_pretrained(args.base_model)
tokenizer.add_special_tokens(
{
"eos_token": "</s>",
"bos_token": "</s>",
"unk_token": "</s>",
"pad_token": "</s>",
}
)
else:
tokenizer = AutoTokenizer.from_pretrained(args.base_model, use_fast=False)
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
train_dataset, eval_dataset = create_datasets(tokenizer, args)
run_training(args, train_dataset, eval_dataset, tokenizer)
if __name__ == "__main__":
args = get_args()
assert args.base_model != "", "Please provide the llama model path"
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_error()
main(args)