-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIF.agda
265 lines (206 loc) · 9.6 KB
/
IF.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
{-# OPTIONS --prop --rewriting #-}
module IF where
open import Lib hiding (id; _∘_)
infixl 3 _▶c_ _▶P_
infixr 5 _$S_ _⇒P_ _⇒̂S_
infixl 7 _[_]T
infixl 8 _[_]tP
infixl 8 _[_]t
data TyS : Set₁ where
U : TyS
_⇒̂S_ : (T : Set) → TyS → TyS
data SCon : Set₁ where
∙c : SCon
_▶c_ : SCon → TyS → SCon
data Var : SCon → TyS → Set₁ where
vvz : ∀{Γc B} → Var (Γc ▶c B) B
vvs : ∀{Γc B B'} → Var Γc B → Var (Γc ▶c B') B
data Tm (Γc : SCon) : TyS → Set₁ where
var : ∀{A} → Var Γc A → Tm Γc A
_$S_ : ∀{T B} → Tm Γc (T ⇒̂S B) → T → Tm Γc B
data TyP (Γc : SCon) : Set₁ where
El : Tm Γc U → TyP Γc
Π̂P : (T : Set) → (T → TyP Γc) → TyP Γc
_⇒P_ : Tm Γc U → TyP Γc → TyP Γc
data Con (Γc : SCon) : Set₁ where
∙ : Con Γc
_▶P_ : Con Γc → TyP Γc → Con Γc
-- No terms in the empty context
Tm∙c : ∀{B} → Tm ∙c B → ⊥
Tm∙c (var ())
Tm∙c (t $S α) = Tm∙c t
-- Non dependent, recursive functions
_⇒̂P_ : ∀{Γc} → Set → TyP Γc → TyP Γc
T ⇒̂P A = Π̂P T (λ _ → A)
-- ▶S
vz : ∀{Γc}{A} → Tm (Γc ▶c A) A
vz = var vvz
vs : ∀{Γc}{A}{B} → Tm Γc A → Tm (Γc ▶c B) A
vs (var x) = var (vvs x)
vs (t $S α) = vs t $S α
-- Substitution calculus
data Sub : SCon → SCon → Set₁ where
ε : ∀{Γc} → Sub Γc ∙c
_,_ : ∀{Γc Δc B} → Sub Γc Δc → Tm Γc B → Sub Γc (Δc ▶c B)
_[_]t : ∀{Γc Δc B} → Tm Δc B → Sub Γc Δc → Tm Γc B
var vvz [ δ , t ]t = t
var (vvs a) [ δ , t ]t = var a [ δ ]t
(a $S α) [ δ ]t = (a [ δ ]t) $S α
_[_]T : ∀{Γc Δc} → TyP Δc → Sub Γc Δc → TyP Γc
Π̂P T u [ δ ]T = Π̂P T (λ α → u α [ δ ]T)
El u [ δ ]T = El (u [ δ ]t)
(a ⇒P B) [ δ ]T = (a [ δ ]t) ⇒P (B [ δ ]T)
_[_]C : ∀{Γc Δc} → Con Δc → Sub Γc Δc → Con Γc
∙ [ σ ]C = ∙
(Γ ▶P A) [ σ ]C = (Γ [ σ ]C) ▶P (A [ σ ]T)
vs[,]t : ∀{Γc Δc A B}(s : Tm Δc A)(t : Tm Γc B)(δ : Sub Γc Δc) → (vs s) [ δ , t ]t ≡ (s [ δ ]t)
vs[,]t (var vvz) t δ = refl
vs[,]t (var (vvs x)) t δ = refl
vs[,]t (s $S α) t δ = happly2 _$S_ (vs[,]t s t δ) α
{-# REWRITE vs[,]t #-}
_∘_ : ∀{Γc}{Δc}{Ωc} → Sub Ωc Δc → Sub Γc Ωc → Sub Γc Δc
ε ∘ γc = ε
(δc , t) ∘ γc = (δc ∘ γc) , (t [ γc ]t)
wk : ∀{Γc}{Δc}{B} → Sub Γc Δc → Sub (Γc ▶c B) Δc
wk ε = ε
wk (δc , t) = wk δc , vs t
wkβ : ∀{Γc Δc Ωc B}{δc : Sub Γc Δc}{γc : Sub Ωc Γc}{t : Tm Ωc B} → wk δc ∘ (γc , t) ≡ δc ∘ γc
wkβ {δc = ε} = refl
wkβ {δc = δc , var x}{γc} = (λ δc₁ → δc₁ , (var x [ γc ]t)) & wkβ
wkβ {δc = δc , (x $S α)}{γc}{t} = _,_ (wk δc ∘ (γc , _)) & vs[,]t (x $S α) t γc ◾ (λ δc₁ → δc₁ , ((x [ γc ]t) $S α)) & wkβ
{-# REWRITE wkβ #-}
id : ∀{Γc} → Sub Γc Γc
id {∙c} = ε
id {Γc ▶c B} = wk id , vz
idl : ∀{Γ}{Δ} → (δ : Sub Γ Δ) → id ∘ δ ≡ δ
idl ε = refl
idl (δ , x) = (λ δ₁ → δ₁ , x) & (idl δ)
{-# REWRITE idl #-}
π₁ : ∀{Γc}{Δc}{B} → Sub Γc (Δc ▶c B) → Sub Γc Δc
π₁ (δ , t) = δ
π₂ : ∀{Γc}{Δc}{B} → Sub Γc (Δc ▶c B) → Tm Γc B
π₂ (δ , t) = t
_^_ : ∀{Γ Δ} → Sub Γ Δ → (B : TyS) → Sub (Γ ▶c B) (Δ ▶c B)
δ ^ B = wk δ , vz
id^ : ∀{Γ B} → id {Γ} ^ B ≡ id
id^ = refl
π₁β : ∀{Γ Δ B}{δ : Sub Γ Δ}{t : Tm Γ B} → π₁ (δ , t) ≡ δ
π₁β = refl
π₂β : ∀{Γ Δ B}{δ : Sub Γ Δ}{t : Tm Γ B} → π₂ (δ , t) ≡ t
π₂β = refl
πβ : ∀{Γ Δ B}{δ : Sub Γ (Δ ▶c B)} → (π₁ δ , π₂ δ) ≡ δ
πβ {δ = δ , x} = refl
[wk]t : ∀{Γ Δ B B'}(δ : Sub Γ Δ) → (t : Tm Δ B) → t [ wk {B = B'} δ ]t ≡ vs (t [ δ ]t)
[wk]t ε (var ())
[wk]t (δ , x) (var vvz) = refl
[wk]t (δ , x) (var (vvs t)) = [wk]t δ (var t)
[wk]t δ (t $S α) = happly2 _$S_ ([wk]t δ t) _
{-# REWRITE [wk]t #-}
[id]t : ∀{Γ}{B} → (t : Tm Γ B) → t [ id ]t ≡ t
[id]t (var vvz) = refl
[id]t (var (vvs t)) = vs & [id]t (var t)
[id]t (t $S α) = happly2 _$S_ ([id]t t) _
{-# REWRITE [id]t #-}
[id]T : ∀{Γ} → (A : TyP Γ) → A [ id ]T ≡ A
[id]T (Π̂P T x) = Π̂P T & ext λ α → [id]T (x α)
[id]T (El x) = El & [id]t x
[id]T (x ⇒P A) = (_⇒P_ & [id]t x) ⊗ [id]T A
{-# REWRITE [id]T #-}
idr : ∀{Γ}{Δ} → (δ : Sub Γ Δ) → δ ∘ id ≡ δ
idr ε = refl
idr (δ , x) = _,_ & idr δ ⊗ [id]t x
{-# REWRITE idr #-}
[][]t : ∀{Γ Δ Ω B}(t : Tm Ω B)(δ : Sub Γ Δ)(γ : Sub Δ Ω) → t [ γ ]t [ δ ]t ≡ t [ γ ∘ δ ]t
[][]t (t $S α) δ ε = happly2 _$S_ ([][]t t δ ε) _
[][]t (var vvz) δ (γ , x) = refl
[][]t (var (vvs t)) δ (γ , x) = [][]t (var t) δ γ
[][]t (t $S α) δ (γ , x) = happly2 _$S_ ([][]t t δ (γ , x)) _
{-# REWRITE [][]t #-}
[][]T : ∀{Γ Δ Ω} → (A : TyP Ω) (δ : Sub Γ Δ)(γ : Sub Δ Ω) → A [ γ ]T [ δ ]T ≡ A [ γ ∘ δ ]T
[][]T {Γ} {Δ} {Ω} (Π̂P T B) δ γ = Π̂P T & ext λ α → [][]T (B α) δ γ
[][]T {Γ} {Δ} {Ω} (El a) δ γ = El & [][]t a δ γ
[][]T {Γ} {Δ} {Ω} (t ⇒P A) δ γ = _⇒P_ & [][]t t δ γ ⊗ [][]T A δ γ
{-# REWRITE [][]T #-}
ass : ∀{Γ Δ Ω Σ}{δ : Sub Γ Δ}{γ : Sub Δ Ω}{ι : Sub Ω Σ} → (ι ∘ γ) ∘ δ ≡ ι ∘ (γ ∘ δ)
ass {δ = δ}{γ}{ε} = refl
ass {δ = δ}{γ}{ι , t} = (λ x → x , (t [ γ ∘ δ ]t)) & ass {δ = δ} {γ} {ι}
εη : ∀{Γ} (δ : Sub Γ ∙c) → δ ≡ ε
εη ε = refl
,∘ : ∀{Γ Δ Ω}{δ : Sub Γ Δ}{γ : Sub Ω Γ}{B : TyS}{t : Tm Γ B} → ((δ , t) ∘ γ) ≡ (δ ∘ γ) , (t [ γ ]t)
,∘ = refl
El[] : ∀{Γ Δ}{δ : Sub Γ Δ}{a : Tm Δ U} → (El a) [ δ ]T ≡ El (a [ δ ]t)
El[] = refl
Π̂P[] : ∀{Γ Δ}{δ : Sub Γ Δ}{T}{A : T → TyP Δ} → (Π̂P T A) [ δ ]T ≡ Π̂P T λ α → A α [ δ ]T
Π̂P[] = refl
$S[] : ∀{Γ Δ}{δ : Sub Γ Δ}{T}{B}{t : Tm Δ (T ⇒̂S B)}{α} → (t $S α) [ δ ]t ≡ (t [ δ ]t) $S α
$S[] = refl
⇒P[] : ∀{Γ Δ}{δ : Sub Γ Δ}{a : Tm Δ U}{A : TyP Δ} → (a ⇒P A) [ δ ]T ≡ (a [ δ ]t) ⇒P (A [ δ ]T)
⇒P[] = refl
_▶S_ : ∀{Γc}(Γ : Con Γc)(B : TyS) → Con (Γc ▶c B)
_▶S_ {Γc} Γ B = Γ [ wk id ]C
-- Point substitution calculus
data VarP {Γc} : Con Γc → TyP Γc → Set₁ where
vvzP : ∀{Γ A} → VarP (Γ ▶P A) A
vvsP : ∀{Γ A B} → VarP Γ A → VarP (Γ ▶P B) A
data TmP {Γc}(Γ : Con Γc) : TyP Γc → Set₁ where
varP : ∀{A} → VarP Γ A → TmP Γ A
_$P_ : ∀{a A} → TmP Γ (a ⇒P A) → TmP Γ (El a) → TmP Γ A
_$̂P_ : ∀{T A} → TmP Γ (Π̂P T A) → (τ : T) → TmP Γ (A τ)
data SubP {Γc} : Con Γc → Con Γc → Set₁ where
εP : ∀{Γ} → SubP Γ ∙
_,P_ : ∀{Γ Δ A} → SubP Γ Δ → TmP Γ A → SubP Γ (Δ ▶P A)
vzP : ∀{Γc Γ A} → TmP {Γc} (Γ ▶P A) A
vzP = varP vvzP
vsP : ∀{Γc Γ A A'} → TmP {Γc} Γ A → TmP (Γ ▶P A') A
vsP (varP x) = varP (vvsP x)
vsP (f $P t) = vsP f $P vsP t
vsP (f $̂P τ) = vsP f $̂P τ
wkP : ∀{Γc}{Γ Δ : Con Γc}{A} → SubP Γ Δ → SubP (Γ ▶P A) Δ
wkP εP = εP
wkP (σP ,P t) = wkP σP ,P vsP t
idP : ∀{Γc}{Γ : Con Γc} → SubP Γ Γ
idP {Γ = ∙} = εP
idP {Γ = Γ ▶P A} = wkP idP ,P vzP
{-∘P : ∀{Γc Δc Σc}{Γ : Con Γc}{Δ : Con Δc}{Σ : Con Σc}
{σ}(σP : SubP σ Δ Σ){δ}(δP : SubP δ Γ Δ) → SubP (σ ∘ δ) Γ Σ
∘P εP δP = εP
∘P {σ = σ} (σP ,P tP) δP = {!!} ,P {!!}-}
{-_,S_ : ∀{Γc}{Γ Δ : Con Γc}(σP : SubP Γ Δ){B}(t : Tm Γc B) → SubP Γ (Δ ▶S B)
_,S_ {Δ = ∙} σP t = εP
_,S_ {Δ = Δ ▶P A} (σP ,P tP) t = (σP ,S t) ,P tP -- coe (TmP _ & [][]T A (σ , t) (wk id)) tP
-}
_[_]tP : ∀{Γc}{Γ Δ : Con Γc}{A}(tP : TmP Δ A)(σP : SubP Γ Δ) → TmP Γ A
varP vvzP [ σP ,P tP ]tP = tP
varP (vvsP v) [ σP ,P tP ]tP = varP v [ σP ]tP
(tP $P sP) [ σP ]tP = (tP [ σP ]tP) $P (sP [ σP ]tP)
(tP $̂P τ) [ σP ]tP = (tP [ σP ]tP) $̂P τ
-- no point terms in the empty point context
TmP∙ : ∀{Γc A} → TmP {Γc} ∙ A → ⊥
TmP∙ (varP ())
TmP∙ (tP $P sP) = TmP∙ tP
TmP∙ (tP $̂P τ) = TmP∙ tP
[wkP]tP : ∀{Γc}{Γ Δ : Con Γc}{A A'}(σP : SubP Γ Δ)(tP : TmP Δ A)
→ tP [ wkP {A = A'} σP ]tP ≡ vsP (tP [ σP ]tP)
[wkP]tP εP tP = ⊥-elim (TmP∙ tP)
[wkP]tP (σP ,P tP) (varP vvzP) = refl
[wkP]tP (σP ,P tP) (varP (vvsP v)) = [wkP]tP σP (varP v)
[wkP]tP (σP ,P _) (tP $P sP) = happly2 _$P_ ([wkP]tP _ tP) _
◾ (_$P_ (vsP (tP [ _ ]tP))) & [wkP]tP _ sP
[wkP]tP (σP ,P _) (tP $̂P τ) = happly2 _$̂P_ ([wkP]tP _ tP) τ
{-# REWRITE [wkP]tP #-}
[idP]tP : ∀{Γc}{Γ : Con Γc}{A}{tP : TmP Γ A} → tP [ idP ]tP ≡ tP
[idP]tP {tP = varP vvzP} = refl
[idP]tP {tP = varP (vvsP v)} = vsP & [idP]tP {tP = varP v}
[idP]tP {tP = tP $P sP} = happly2 _$P_ ([idP]tP {tP = tP}) _
◾ _$P_ tP & [idP]tP
[idP]tP {tP = tP $̂P τ} = happly2 _$̂P_ [idP]tP τ
{-# REWRITE [idP]tP #-}
vsP[,P]tP : ∀{Γc}{Γ Δ : Con Γc}{A A'}{tP : TmP Δ A}{sP}{σP : SubP Γ Δ}
→ (vsP {A' = A'} tP) [ σP ,P sP ]tP ≡ tP [ σP ]tP
vsP[,P]tP {tP = varP x} = refl
vsP[,P]tP {tP = tP $P sP} {rP} {σP} = _$P_ & vsP[,P]tP {tP = tP}{rP}{σP}
⊗ vsP[,P]tP {tP = sP} {rP} {σP}
vsP[,P]tP {tP = tP $̂P τ} {sP} {σP} = (λ tP → tP $̂P τ)
& vsP[,P]tP {tP = tP}{sP}{σP}
{-# REWRITE vsP[,P]tP #-}
--TODO complete calculus here