-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIFEx_REW.agda
139 lines (106 loc) · 5.68 KB
/
IFEx_REW.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
{-# OPTIONS --rewriting #-}
module IFEx_REW where
open import Lib hiding (id; _∘_)
open import IF
open import IFA
open import IFD
open import IFS
conSᵃ' : ∀{Ωc}(Ω : Con Ωc){B}(t : Tm Ωc B) → _ᵃS {suc zero} B
conSᵃ' Ω {U} t = TmP Ω (El t)
conSᵃ' Ω {T ⇒̂S B} t = λ τ → conSᵃ' Ω (t $S τ)
concᵃ' : ∀{Ωc}(Ω : Con Ωc)(Γc : SCon)(σ : Sub Ωc Γc) → _ᵃc {suc zero} Γc
concᵃ' Ω ∙c ε = lift tt
concᵃ' Ω (Γc ▶c B) (σ , t) = concᵃ' Ω Γc σ , conSᵃ' Ω t
contᵃ' : ∀{Ωc}(Ω : Con Ωc){Γc}(σ : Sub Ωc Γc){B}(t : Tm Γc B)
→ (t ᵃt) (concᵃ' Ω Γc σ) ≡ conSᵃ' Ω {B} (t [ σ ]t)
contᵃ' Ω ε t = ⊥-elim (Tm∙c t)
contᵃ' Ω (σ , s) (var vvz) = refl
contᵃ' Ω (σ , s) {B} (var (vvs x)) = contᵃ' Ω σ (var x)
contᵃ' Ω (σ , s) {B} (_$S_ {T}{B''} t α) = happly (contᵃ' Ω (σ , s) {T ⇒̂S B''} t) α
{-# REWRITE contᵃ' #-}
contᵃ'' : ∀{Ωc}(Ω : Con Ωc){Γc}(σ : Sub Ωc Γc){B}(t : Tm Γc B)
→ conSᵃ' Ω {B} (t [ σ ]t) ≡ conSᵃ' Ω {B} (t [ σ ]t [ id ]t)
contᵃ'' Ω σ t = refl
--{-# REWRITE contᵃ'' #-}
conPᵃ' : ∀{Ωc}(Ω : Con Ωc){A}(tP : TmP Ω A) → (A ᵃP) (concᵃ' Ω Ωc id)
conPᵃ' Ω {El a} tP = tP
conPᵃ' Ω {Π̂P T A} tP = λ τ → conPᵃ' Ω {A τ} (tP $̂P τ)
conPᵃ' Ω {a ⇒P A} tP = λ α → conPᵃ' Ω {A} (tP $P α)
conᵃ' : ∀{Ωc}(Ω Γ : Con Ωc)(σP : SubP Ω Γ) → (Γ ᵃC) (concᵃ' Ω Ωc id)
conᵃ' Ω ∙ εP = lift tt
conᵃ' Ω (Γ ▶P A) (σP ,P tP) = conᵃ' Ω Γ σP , conPᵃ' Ω {A} tP
contPᵃ' : ∀{Ωc}(Ω Γ : Con Ωc)(σP : SubP Ω Γ){A}(tP : TmP Γ A)
→ (tP ᵃtP) (conᵃ' Ω Γ σP) ≡ conPᵃ' Ω {A} (tP [ σP ]tP)
contPᵃ' Ω ∙ εP tP = ⊥-elim (TmP∙ tP)
contPᵃ' Ω (Γ ▶P A) (σP ,P sP) (varP vvzP) = refl
contPᵃ' Ω (Γ ▶P A) (σP ,P sP) (varP (vvsP v)) = contPᵃ' Ω Γ σP (varP v)
contPᵃ' Ω (Γ ▶P A) (σP ,P sP) (tP $P uP) = contPᵃ' Ω (Γ ▶P A) (σP ,P sP) tP
⊗ contPᵃ' Ω (Γ ▶P A) (σP ,P sP) uP
contPᵃ' Ω (Γ ▶P A) (σP ,P sP) (tP $̂P τ) = happly (contPᵃ' Ω _ _ tP) τ
{-# REWRITE contPᵃ' #-}
concᵃ : ∀{Γc}(Γ : Con Γc) → _ᵃc {suc zero} Γc
concᵃ {Γc} Γ = concᵃ' Γ Γc id
conᵃ : ∀{Γc}(Γ : Con Γc) → (Γ ᵃC) (concᵃ Γ)
conᵃ Γ = conᵃ' Γ Γ idP
elimSᵃ' : ∀{Ωc}(Ω : Con Ωc){ωcᵈ}(ωᵈ : ᵈC {suc zero} Ω ωcᵈ (conᵃ Ω)){B}(t : Tm Ωc B) → ˢS B (ᵈt t ωcᵈ)
elimSᵃ' Ω ωᵈ {U} t = λ α → ᵈtP α ωᵈ
elimSᵃ' Ω ωᵈ {T ⇒̂S B} t = λ τ → elimSᵃ' Ω ωᵈ {B} (t $S τ)
elimcᵃ' : ∀{Ωc}(Ω : Con Ωc){ωcᵈ}(ωᵈ : ᵈC Ω ωcᵈ (conᵃ Ω)){Γc}(σ : Sub Ωc Γc) → ˢc Γc (ᵈs σ ωcᵈ)
elimcᵃ' Ω ωᵈ ε = lift tt
elimcᵃ' Ω ωᵈ (σ , t) = elimcᵃ' Ω ωᵈ σ , elimSᵃ' Ω ωᵈ t
elimtᵃ' : ∀{Ωc}(Ω : Con Ωc){ωcᵈ}(ωᵈ : ᵈC {suc zero} Ω ωcᵈ (conᵃ Ω)){Γc}(σ : Sub Ωc Γc){B}(t : Tm Γc B)
→ (elimSᵃ' Ω ωᵈ (t [ σ ]t)) ≡ coe {!!} (ˢt t (elimcᵃ' Ω ωᵈ σ))
elimtᵃ' Ω ωᵈ ε (var ())
elimtᵃ' Ω ωᵈ (σ , t) (var vvz) = refl
elimtᵃ' Ω ωᵈ (σ , t) (var (vvs v)) = elimtᵃ' Ω ωᵈ σ (var v)
elimtᵃ' Ω ωᵈ σ (_$S_ {T} {B} t τ) = {!!}
elimPᵃ' : ∀{Ωc}(Ω : Con Ωc){ωcᵈ}(ωᵈ : ᵈC Ω ωcᵈ (conᵃ Ω)){A}(tP : TmP Ω A)
→ ˢP A (elimcᵃ' Ω ωᵈ id) (ᵈtP tP ωᵈ)
elimPᵃ' Ω ωᵈ {El a} tP = {!!} --elimtᵃ' Ω ωᵈ σ a
elimPᵃ' Ω ωᵈ {Π̂P T A} tP = λ τ → elimPᵃ' Ω ωᵈ {A τ} (tP $̂P τ)
elimPᵃ' Ω ωᵈ {a ⇒P A} tP = λ α → coe (ˢP A (elimcᵃ' Ω ωᵈ id)
& (ᵈtP tP ωᵈ α & {!!}))
(elimPᵃ' Ω ωᵈ (tP $P α))
elimᵃ' : ∀{Ωc}(Ω Γ : Con Ωc){ωcᵈ}(ωᵈ : ᵈC Ω ωcᵈ (conᵃ Ω))
(σP : SubP Ω Γ) → ˢC Γ (elimcᵃ' Ω ωᵈ id) (ᵈsP σP ωᵈ)
elimᵃ' Ω ∙ ωᵈ σP = lift tt
elimᵃ' Ω (Γ ▶P A) ωᵈ (σP ,P tP) = elimᵃ' Ω Γ ωᵈ σP , elimPᵃ' Ω ωᵈ {A} tP
elimcᵃ : ∀{Γc}(Γ : Con Γc){γcᵈ}(γᵈ : ᵈC Γ γcᵈ (conᵃ Γ)) → ˢc Γc γcᵈ
elimcᵃ Γ γᵈ = elimcᵃ' Γ γᵈ id
elimᵃ : ∀{Γc}(Γ : Con Γc){γcᵈ}(γᵈ : ᵈC Γ γcᵈ (conᵃ Γ)) → ˢC Γ (elimcᵃ Γ γᵈ) γᵈ
elimᵃ Γ γᵈ = elimᵃ' Γ Γ γᵈ idP
--some examples
Γnat : Con (∙c ▶c U)
Γnat = ∙ ▶P vz ⇒P El vz ▶P El vz
nat : Set₁
nat = ₂ (concᵃ Γnat)
nzero : nat
nzero = ₂ (conᵃ Γnat)
nsucc : nat → nat
nsucc = ₂ (₁ (conᵃ Γnat))
nrec : ∀(P : nat → Set₁)(ps : ∀ n → P n → P (nsucc n))(pz : P nzero) → ∀ n → P n
nrec P ps pz = elimSᵃ' Γnat (_ , (λ m p → ps m p) , pz) vz
Γuu : Con (∙c ▶c U ▶c U)
Γuu = ∙ ▶P El (vs vz) ▶P El vz
uu1 : Set₁
uu1 = ₂ (₁ (concᵃ Γuu))
uu2 : Set₁
uu2 = ₂ (concᵃ Γuu)
st1 : uu1
st1 = ₂ (₁ (conᵃ Γuu))
st2 : uu2
st2 = ₂ (conᵃ Γuu)
uurec : ∀(P : uu1 → Set₁)(Q : uu2 → Set₁)(p : P st1)(q : Q st2) →
ˢc (∙c ▶c U ▶c U) (_ , P , Q)
uurec P Q p q = elimcᵃ Γuu (_ , p , q)
postulate N : Set
postulate Nz : N
postulate Ns : N → N
Γvec : Set → Con (∙c ▶c N ⇒̂S U)
Γvec A = ∙ ▶P El (vz $S Nz) ▶P (Π̂P A (λ a → Π̂P N λ m → (vz $S m) ⇒P El (vz $S Ns m)))
vec : Set → N → Set₁
vec A = ₂ (concᵃ (Γvec A))
vzero : {A : Set} → vec A Nz
vzero = ₂ (₁ (conᵃ (Γvec _)))
vcons : ∀{A : Set}(a : A) n → vec A n → vec A (Ns n)
vcons = ₂ (conᵃ (Γvec _))