-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathW.agda
223 lines (191 loc) · 6.29 KB
/
W.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
{-# OPTIONS --rewriting --allow-unsolved-metas #-}
open import Lib hiding (id; _∘_)
open import IFA
open import IFD
import E
module W (Ω : E.Con)
{ωc : _ᵃc {zero} (E.Con.Ec Ω)}(ω : (E.Con.E Ω ᵃC) ωc) where
module Ω = E.Con Ω
infixl 7 _[_]TS
infixl 7 _[_]TP
--infixl 7 _[_]T
infix 6 _∘_
infixl 8 _[_]tS
infixl 8 _[_]tP
--infixl 8 _[_]t
infixl 5 _,tS_
infixl 5 _,tP_
--infixl 5 _,t_
--infixl 3 _▶_
infixl 3 _▶P_
infixl 3 _▶S_
record Con : Set₃ where
field
E : E.Con
wc : (σ : E.Sub Ω E) → ᵈc {suc zero} (E.Con.Ec E) ((E.Sub.Ec σ ᵃs) ωc)
record TyS (Γ : Con) : Set₃ where
module Γ = Con Γ
field
E : E.TyS Γ.E
w : Set₁ → Set₁
record TyP (Γ : Con) : Set₃ where
module Γ = Con Γ
field
E : E.TyP Γ.E
w : ∀(σ : E.Sub Ω Γ.E) α → ᵈP (E.TyP.E E) (Γ.wc σ) α
record TmS (Γ : Con) (B : TyS Γ) : Set₃ where
module Γ = Con Γ
module B = TyS B
field
E : E.TmS Γ.E B.E
hTy : TyS Γ
w : ∀(σ : E.Sub Ω Γ.E) α → ᵈt (E.TmS.E E) (Γ.wc σ) α ≡ {!!}
record TmP (Γ : Con) (A : TyP Γ) : Set₃ where
module Γ = Con Γ
module A = TyP A
field
E : E.TmP Γ.E A.E
record Sub (Γ : Con) (Δ : Con) : Set₂ where
module Γ = Con Γ
module Δ = Con Δ
field
E : E.Sub Γ.E Δ.E
∙ : Con
∙ = record { E = E.∙
}
_▶S_ : (Γ : Con) → TyS Γ → Con
Γ ▶S B = record { E = Γ.E E.▶S B.E
; wc = λ σ → Γ.wc (E.π₁S σ) , λ _ → B.w Set
}
where
module Γ = Con Γ
module B = TyS B
_▶P_ : (Γ : Con) → TyP Γ → Con
Γ ▶P A = record { E = Γ.E E.▶P A.E
; wc = λ σ → Γ.wc (E.π₁P σ)
}
where
module Γ = Con Γ
module A = TyP A
U : {Γ : Con} → TyS Γ
U {Γ} = record { E = E.U
; w = λ _ → Set
}
where
module Γ = Con Γ
El : {Γ : Con} (a : TmS Γ U) → TyP Γ
El {Γ} a = record { E = E.El a.E
; w = λ σ α → {!!} --coe (a.w σ α ⁻¹) {!!}
}
where
module Γ = Con Γ
module a = TmS a
ΠS : {Γ : Con} → (a : TmS Γ U) → (B : TyS (Γ ▶P El a)) → TyS Γ
ΠS {Γ} a B = record { E = E.ΠS a.E B.E
; w = λ X → B.w X
}
where
module Γ = Con Γ
module a = TmS a
module aS = E.TmS a.E
module B = TyS B
ΠP : {Γ : Con} → (a : TmS Γ U) → (A : TyP (Γ ▶P El a)) → TyP Γ
ΠP {Γ} a A = record { E = E.ΠP a.E A.E
; w = λ σ ϕ α αᵈ → A.w (σ E.,tP {!!}) (ϕ α)
}
where
module Γ = Con Γ
module a = TmS a
module aS = E.TmS a.E
module A = TyP A
appS : {Γ : Con} {a : TmS Γ U} → {B : TyS (Γ ▶P El a)} → (t : TmS Γ (ΠS a B)) → TmS (Γ ▶P El a) B
appS {Γ}{a}{B} t = record { E = E.appS t.E
; hTy = {!!}
; w = λ σ α → t.w _ α ◾ {!!} --t.w (E.π₁P {A = E.El a.E} σ) α
}
where
module Γ = Con Γ
module a = TmS a
module B = TyS B
module t = TmS t
appP : {Γ : Con}{a : TmS Γ U}{B : TyP (Γ ▶P El a)} → (t : TmP Γ (ΠP a B)) → TmP (Γ ▶P El a) B
appP {Γ}{a}{B} t = record { E = E.appP t.E
}
where
module a = TmS a
module B = TyP B
module t = TmP t
_[_]TS : ∀{Γ Δ} → TyS Δ → Sub Γ Δ → TyS Γ
_[_]TS B σ = record { E = B.E E.[ σ.E ]TS
; w = λ X → {!!}
}
where
module B = TyS B
module σ = Sub σ
_[_]TP : ∀{Γ Δ} → TyP Δ → Sub Γ Δ → TyP Γ
_[_]TP A σ = record { E = A.E E.[ σ.E ]TP
; w = λ δ α → coe {!!} (A.w (σ.E E.∘ δ) α)
}
where
module A = TyP A
module σ = Sub σ
_[_]tS : ∀{Γ Δ}{A : TyS Δ} → TmS Δ A → (σ : Sub Γ Δ) → TmS Γ (A [ σ ]TS)
_[_]tS {Γ}{Δ}{A} a σ = record { E = a.E E.[ σ.E ]tS
; hTy = {!!}
; w = λ δ α → {!!} ◾ a.w (σ.E E.∘ δ) α
}
where
module A = TyS A
module a = TmS a
module σ = Sub σ
_[_]tP : ∀{Γ Δ}{A : TyP Δ} → TmP Δ A → (σ : Sub Γ Δ) → TmP Γ (A [ σ ]TP)
_[_]tP {Γ}{Δ}{A} a σ = record { E = a.E E.[ σ.E ]tP
}
where
module A = TyP A
module a = TmP a
module σ = Sub σ
id : ∀{Γ} → Sub Γ Γ
id {Γ} = record { E = E.id
}
where
module Γ = Con Γ
_∘_ : ∀{Γ Δ Σ} → Sub Δ Σ → Sub Γ Δ → Sub Γ Σ
σ ∘ δ = record { E = σ.E E.∘ δ.E
}
where
module σ = Sub σ
module δ = Sub δ
ε : ∀{Γ} → Sub Γ ∙
ε = record { E = E.ε }
_,tS_ : ∀{Γ Δ}(σ : Sub Γ Δ){B : TyS Δ} → TmS Γ (B [ σ ]TS) → Sub Γ (Δ ▶S B)
σ ,tS t = record { E = σ.E E.,tS t.E }
where
module σ = Sub σ
module t = TmS t
_,tP_ : ∀{Γ Δ}(σ : Sub Γ Δ) → {A : TyP Δ} → (t : TmP Γ (A [ σ ]TP)) → Sub Γ (Δ ▶P A)
_,tP_ σ {A} t = record { E = σ.E E.,tP t.E }
where
module σ = Sub σ
module A = TyP A
module t = TmP t
π₁S : ∀{Γ Δ}{B : TyS Δ} → Sub Γ (Δ ▶S B) → Sub Γ Δ
π₁S σ = record { E = E.π₁S σ.E }
where
module σ = Sub σ
π₁P : ∀{Γ Δ}{A : TyP Δ} → Sub Γ (Δ ▶P A) → Sub Γ Δ
π₁P σ = record { E = E.π₁P σ.E }
where
module σ = Sub σ
π₂S : ∀{Γ Δ}{B : TyS Δ}(σ : Sub Γ (Δ ▶S B)) → TmS Γ (B [ π₁S {B = B} σ ]TS)
π₂S {Γ}{Δ}{B} σ = record { E = E.π₂S {B = TyS.E B} σ.E
; hTy = {!!}
; w = λ δ α → {!!}
}
where
module σ = Sub σ
π₂P : ∀{Γ Δ}{A : TyP Δ}(σ : Sub Γ (Δ ▶P A)) → TmP Γ (A [ π₁P {A = A} σ ]TP)
π₂P {Γ}{Δ}{A} σ = record { E = E.π₂P σ.E }
where
module A = TyP A
module σ = Sub σ