-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
53 lines (50 loc) · 1.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
max_num_hands = 1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.flip(image, 1)
imgH, imgW, _ = image.shape
results = hands.process(image)
X= []
Y = []
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
#print(len(results.multi_hand_landmarks))
for hand_landmarks in results.multi_hand_landmarks:
#print(hand_landmarks.landmark)
#print(len(hand_landmarks.landmark))
for i in range(0,len(hand_landmarks.landmark)):
X.append((hand_landmarks.landmark[i].x)*imgW)
Y.append((hand_landmarks.landmark[i].y)*imgH)
print(X,Y)
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Hands', image )
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()